9 resultados para CLASSICAL-SOLUTIONS
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Цветан Д. Христов, Недю Ив. Попиванов, Манфред Шнайдер - Изучени са някои тримерни гранични задачи за уравнения от смесен тип. За уравнения от типа на Трикоми те са формулирани от М. Протер през 1952, като тримерни аналози на задачите на Дарбу или Коши–Гурса в равнината. Добре известно е, че новите задачи са некоректни. Ние формулираме нова гранична задача за уравнения от типа на Келдиш и даваме понятие за квазиругулярно решение на тази задача и на eдна от задачите на Протер. Намерени са достатъчни условия за единственост на такива решения.
Resumo:
Недю Иванов Попиванов, Алексей Йорданов Николов - През 1952 г. М. Протър формулира нови гранични задачи за вълновото уравнение, които са тримерни аналози на задачите на Дарбу в равнината. Задачите са разгледани в тримерна област, ограничена от две характеристични конуса и равнина. Сега, след като са минали повече от 50 години, е добре известно, че за безброй гладки функции в дясната страна на уравнението тези задачи нямат класически решения, а обобщеното решение има силна степенна особеност във върха на характеристичния конус, която е изолирана и не се разпространява по конуса. Тук ние разглеждаме трета гранична задача за вълновото уравнение с младши членове и дясна страна във формата на тригонометричен полином. Дадена е по-нова от досега известната априорна оценка за максимално възможната особеност на решенията на тази задача. Оказва се, че при по-общото уравнение с младши членове възможната сингулярност е от същия ред като при чисто вълновото уравнение.
Resumo:
Mathematics Subject Class.: 33C10,33D60,26D15,33D05,33D15,33D90
Resumo:
AMS Subj. Classification: 83C15, 83C35
Resumo:
MSC 2010: 44A35, 35L20, 35J05, 35J25
Resumo:
2000 Mathematics Subject Classification: Primary 81R50, 16W50, 16S36, 16S37.
Resumo:
Иван Хр. Димовски, Юлиан Ц. Цанков - Предложен е метод за намиране на явни решения на клас двумерни уравнения на топлопроводността с нелокални условия по пространствените променливи. Методът е основан на директно тримерно операционно смятане. Класическата дюамелова конволюция е комбинирана с две некласически конволюции за операторите ∂xx и ∂yy в една тримерна конволюция. Съответното операционно смятане използва мултипликаторни частни. Мултипликаторните частни позволяват да се продължи принципът на Дюамел за пространствените променливи и да се намерят явни решения на разглежданите гранични задачи. Общите разглеждания са приложени в случая на гранични условия от типа на Йонкин. Намерени са експлицитни решения в затворен вид.
Resumo:
MSC 2010: 35R11, 42A38, 26A33, 33E12
Resumo:
MSC 2010: 44A35, 44A45, 44A40, 35K20, 35K05