51 resultados para Bellman Equation

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Йордан Йорданов, Андрей Василев - В работата се изследват методи за решаването на задачи на оптималното управление в дискретно време с безкраен хоризонт и явни управления. Дадена е обосновка на една процедура за решаване на такива задачи, базирана на множители на Лагранж, коята често се употребява в икономическата литература. Извеждени са необходимите условия за оптималност на базата на уравнения на Белман и са приведени достатъчни условия за оптималност при допускания, които често се използват в икономиката.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 37F21, 70H20, 37L40, 37C40, 91G80, 93E20.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The author is partially supported by: M. U. R. S. T. Prog. Nazionale “Problemi e Metodi nella Teoria delle Equazioni Iperboliche”.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We solve the functional equation f(x^m + y) = f(x)^m + f(y) in the realm of polynomials with integer coefficients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the Cauchy problem for utt − ∆u + V (x)u^5 = 0 in 3–dimensional case. The function V (x) is positive and regular, in particular we are interested in the case V (x) = 0 in some points. We look for the global classical solution of this equation under a suitable hypothesis on the initial energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

∗The author was partially supported by M.U.R.S.T. Progr. Nazionale “Problemi Non Lineari...”

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orthonormal polynomials on the real line {pn (λ)} n=0 ... ∞ satisfy the recurrent relation of the form: λn−1 pn−1 (λ) + αn pn (λ) + λn pn+1 (λ) = λpn (λ), n = 0, 1, 2, . . . , where λn > 0, αn ∈ R, n = 0, 1, . . . ; λ−1 = p−1 = 0, λ ∈ C. In this paper we study systems of polynomials {pn (λ)} n=0 ... ∞ which satisfy the equation: αn−2 pn−2 (λ) + βn−1 pn−1 (λ) + γn pn (λ) + βn pn+1 (λ) + αn pn+2 (λ) = λ2 pn (λ), n = 0, 1, 2, . . . , where αn > 0, βn ∈ C, γn ∈ R, n = 0, 1, 2, . . ., α−1 = α−2 = β−1 = 0, p−1 = p−2 = 0, p0 (λ) = 1, p1 (λ) = cλ + b, c > 0, b ∈ C, λ ∈ C. It is shown that they are orthonormal on the real and the imaginary axes in the complex plane ...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* Partially supported by CNPq (Brazil)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fermat equation is solved in integral two by two matrices of determinant one as well as in finite order integral three by three matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we are concerned with the optimal control boundary control of a second order parabolic heat equation. Using the results in [Evtushenko, 1997] and spatial central finite difference with diagonally implicit Runge-Kutta method (DIRK) is applied to solve the parabolic heat equation. The conjugate gradient method (CGM) is applied to solve the distributed control problem. Numerical results are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* This work has been supported by NIMP, University of Plovdiv under contract No MU-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper is devoted to the study of the Cauchy problem for a nonlinear differential equation of complex order with the Caputo fractional derivative. The equivalence of this problem and a nonlinear Volterra integral equation in the space of continuously differentiable functions is established. On the basis of this result, the existence and uniqueness of the solution of the considered Cauchy problem is proved. The approximate-iterative method by Dzjadyk is used to obtain the approximate solution of this problem. Two numerical examples are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematics Subject Classification: 42B35, 35L35, 35K35

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33 (primary), 35S15 (secondary)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematics Subject Classification: 44A40, 45B05