115 resultados para Computing Classification Systems
Resumo:
Симеон Т. Стефанов, Велика И. Драгиева - В работата е изследвана еволюцията на системи от множества върху n-мерната евклидова сфера S^n. Установена е връзката на такива системи с хомотопичните групи на сферите. Получени са някои комбинаторни приложения за многостени.
Resumo:
Михаил Константинов, Весела Пашева, Петко Петков - Разгледани са някои числени проблеми при използването на компютърната система MATLAB в учебната дейност: пресмятане на тригонометрични функции, повдигане на матрица на степен, спектрален анализ на целочислени матрици от нисък ред и пресмятане на корените на алгебрични уравнения. Причините за възникналите числени трудности могат да се обяснят с особеностите на използваната двоичната аритметика с плаваща точка.
Resumo:
AMS subject classification: 49N55, 93B52, 93C15, 93C10, 26E25.
Resumo:
2010 Mathematics Subject Classification: 35J65, 35K60, 35B05, 35R05.
Resumo:
2002 Mathematics Subject Classification: 35L40
Resumo:
An algorithm is produced for the symbolic solving of systems of partial differential equations by means of multivariate Laplace–Carson transform. A system of K equations with M as the greatest order of partial derivatives and right-hand parts of a special type is considered. Initial conditions are input. As a result of a Laplace–Carson transform of the system according to initial condition we obtain an algebraic system of equations. A method to obtain compatibility conditions is discussed.
Resumo:
There are limitations in recent research undertaken on attribute reduction in incomplete decision systems. In this paper, we propose a distance-based method for attribute reduction in an incomplete decision system. In addition, we prove theoretically that our method is more effective than some other methods.
Resumo:
A rough set approach for attribute reduction is an important research subject in data mining and machine learning. However, most attribute reduction methods are performed on a complete decision system table. In this paper, we propose methods for attribute reduction in static incomplete decision systems and dynamic incomplete decision systems with dynamically-increasing and decreasing conditional attributes. Our methods use generalized discernibility matrix and function in tolerance-based rough sets.
Resumo:
2000 Mathematics Subject Classification: 65H10.
Resumo:
2000 Mathematics Subject Classification: Primary: 34L25; secondary: 47A40, 81Q10.