41 resultados para Pattern recognition techniques


Relevância:

80.00% 80.00%

Publicador:

Resumo:

* The work is partially supported by Grant no. NIP917 of the Ministry of Science and Education – Republic of Bulgaria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the problems in AI tasks solving by neurocomputing methods is a considerable training time. This problem especially appears when it is needed to reach high quality in forecast reliability or pattern recognition. Some formalised ways for increasing of networks’ training speed without loosing of precision are proposed here. The offered approaches are based on the Sufficiency Principle, which is formal representation of the aim of a concrete task and conditions (limitations) of their solving [1]. This is development of the concept that includes the formal aims’ description to the context of such AI tasks as classification, pattern recognition, estimation etc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article the new approach for optimization of estimations calculating algorithms is suggested. It can be used for finding the correct algorithm of minimal complexity in the context of algebraic approach for pattern recognition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Given in the report conceptual presentation of the main principles of fractal-complexity Ration of the media and thinking processes of the human was formulated on the bases of the cybernetic interpretation of scientific information (basically from neurophysiology and neuropsychology, containing the interpretation giving the best fit to the authors point of view) and plausible hypothesis's, filling the lack of knowledge.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

* Работа выполнена при поддержке РФФИ, гранты 07-01-00331-a и 08-01-00944-a

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The method of logic and probabilistic models constructing for multivariate heterogeneous time series is offered. There are some important properties of these models, e.g. universality. In this paper also discussed the logic and probabilistic models distinctive features in comparison with hidden Markov processes. The early proposed time series forecasting algorithm is tested on applied task.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Рассматривается задача структуризации избыточного набора информации, выявления основных закономерностей, содержащихся в нем с помощью аппарата FRiS-функций. В результате решения этой задачи (задачи SDX) на основе исходного множества объектов строится его сокращенное описание в терминах классов и существенных признаков. Данное описание снабжено системой правил, позволяющих восстанавливать значения всех признаков на основе существенных и находить место новым объектам в системе построенных классов.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Разработан и реализован алгоритм выявления фракталоподобных структур в ДНК- последовательностях. Фрактальность трактуется как самоподобие, основанное на свойстве симметрии или комплементарной симметрии. Локальные фракталы интересны своей способностью аккумулировать множественные палиндромно-шпилечные структуры с потенциально возможными регуляторными функциями. Выявлены реальные случаи проявления фрактальности в различных геномах: от вирусов до человека. Рассмотрена возможность использования фракталоподобных структур в качестве маркеров, различающих близкие классы последовательностей.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of cancer diagnosis from multi-channel images using the neural networks is investigated. The goal of this work is to classify the different tissue types which are used to determine the cancer risk. The radial basis function networks and backpropagation neural networks are used for classification. The results of experiments are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): I.2.8 , I.2.10, I.5.1, J.2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we present one approach for extending the learning set of a classification algorithm with additional metadata. It is used as a base for giving appropriate names to found regularities. The analysis of correspondence between connections established in the attribute space and existing links between concepts can be used as a test for creation of an adequate model of the observed world. Meta-PGN classifier is suggested as a possible tool for establishing these connections. Applying this approach in the field of content-based image retrieval of art paintings provides a tool for extracting specific feature combinations, which represent different sides of artists' styles, periods and movements.