43 resultados para Fractional-order control
Resumo:
Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05.
Resumo:
MSC 2010: 26A33, 35R11, 35R60, 35Q84, 60H10 Dedicated to 80-th anniversary of Professor Rudolf Gorenflo
Resumo:
Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата.
Resumo:
MSC 2010: 49K05, 26A33
Resumo:
The paper is devoted to the study of the Cauchy problem for a nonlinear differential equation of complex order with the Caputo fractional derivative. The equivalence of this problem and a nonlinear Volterra integral equation in the space of continuously differentiable functions is established. On the basis of this result, the existence and uniqueness of the solution of the considered Cauchy problem is proved. The approximate-iterative method by Dzjadyk is used to obtain the approximate solution of this problem. Two numerical examples are given.
Resumo:
2000 Mathematics Subject Classification: 26A33 (main), 44A40, 44A35, 33E30, 45J05, 45D05
Resumo:
2000 Mathematics Subject Classification: 35A15, 44A15, 26A33
Resumo:
Mathematics Subject Classification: 26A33, 74B20, 74D10, 74L15
Resumo:
MSC 2010: 35R11, 44A10, 44A20, 26A33, 33C45
Resumo:
In this paper, we are concerned with the optimal control boundary control of a second order parabolic heat equation. Using the results in [Evtushenko, 1997] and spatial central finite difference with diagonally implicit Runge-Kutta method (DIRK) is applied to solve the parabolic heat equation. The conjugate gradient method (CGM) is applied to solve the distributed control problem. Numerical results are reported.
Resumo:
Mathematics Subject Classification: 26A33, 34A60, 34K40, 93B05
Resumo:
Mathematics Subject Classification: 26A33, 93C83, 93C85, 68T40
Resumo:
MSC 2010: 26A33, 70H25, 46F12, 34K37 Dedicated to 80-th birthday of Prof. Rudolf Gorenflo
Resumo:
The paper is related with the problem of developing autonomous intelligent robots for complex environments. In details it outlines a knowledge-based robot control architecture that combines several techniques in order to supply an ability to adapt and act autonomously in complex environments. The described architecture has been implemented as a robotic system that demonstrates its operation in dynamic environment. Although the robotic system demonstrates a certain level of autonomy, the experiments show that there are situation, in which the developed base architecture should be complemented with additional modules. The last few chapters of the paper describe the experimentation results and the current state of further research towards the developed architecture.
Resumo:
The paper considers vector discrete optimization problem with linear fractional functions of criteria on a feasible set that has combinatorial properties of combinations. Structural properties of a feasible solution domain and of Pareto–optimal (efficient), weakly efficient, strictly efficient solution sets are examined. A relation between vector optimization problems on a combinatorial set of combinations and on a continuous feasible set is determined. One possible approach is proposed in order to solve a multicriteria combinatorial problem with linear- fractional functions of criteria on a set of combinations.