47 resultados para Differential Inclusions with Constraints
Resumo:
Mathematics Subject Classification: 26A33, 34A60, 34K40, 93B05
Resumo:
2000 Mathematics Subject Classification: 58C06, 47H10, 34A60.
Resumo:
AMS subject classification: Primary 34A60, Secondary 49K24.
Resumo:
AMS subject classification: Primary 49N25, Secondary 49J24, 49J25.
Resumo:
The general ordinary quasi-differential expression M of n-th order with complex coefficients and its formal adjoint M + are considered over a regoin (a, b) on the real line, −∞ ≤ a < b ≤ ∞, on which the operator may have a finite number of singular points. By considering M over various subintervals on which singularities occur only at the ends, restrictions of the maximal operator generated by M in L2|w (a, b) which are regularly solvable with respect to the minimal operators T0 (M ) and T0 (M + ). In addition to direct sums of regularly solvable operators defined on the separate subintervals, there are other regularly solvable restrications of the maximal operator which involve linking the various intervals together in interface like style.
Resumo:
Some oscillation criteria for solutions of a general perturbed second order ordinary differential equation with damping (r(t)x′ (t))′ + h(t)f (x)x′ (t) + ψ(t, x) = H(t, x(t), x′ (t)) with alternating coefficients are given. The results obtained improve and extend some existing results in the literature.
Resumo:
* This investigation was supported by the Bulgarian Ministry of Science and Education under Grant MM-7.
Resumo:
In the present paper the problems of the optimal control of systems when constraints are imposed on the control is considered. The optimality conditions are given in the form of Pontryagin’s maximum principle. The obtained piecewise linear function is approximated by using feedforward neural network. A numerical example is given.
Resumo:
The paper is devoted to the study of the Cauchy problem for a nonlinear differential equation of complex order with the Caputo fractional derivative. The equivalence of this problem and a nonlinear Volterra integral equation in the space of continuously differentiable functions is established. On the basis of this result, the existence and uniqueness of the solution of the considered Cauchy problem is proved. The approximate-iterative method by Dzjadyk is used to obtain the approximate solution of this problem. Two numerical examples are given.
Resumo:
Mathematics Subject Classification: 65C05, 60G50, 39A10, 92C37
Resumo:
2000 Mathematics Subject Classification: 26A33, 33C60, 44A15, 35K55
Resumo:
Mathematics Subject Classification: 26A33, 34A37.
Resumo:
Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05
Resumo:
Stability of nonlinear impulsive differential equations with "supremum" is studied. A special type of stability, combining two different measures and a dot product on a cone, is defined. Perturbing cone-valued piecewise continuous Lyapunov functions have been applied. Method of Razumikhin as well as comparison method for scalar impulsive ordinary differential equations have been employed.
Resumo:
Sufficient conditions for the existence of Lp(k)-solutions of linear nonhomogeneous impulsive differential equations with unbounded linear operator are found. An example of the theory of the linear nonhomogeneous partial impulsive differential equations of parabolic type is given.