Nonexistence Results of Solutions of Semilinear Differential Inequalities with Temperal Fractional Derivative on the Heinsenberg Group
Data(s) |
29/08/2010
29/08/2010
2009
|
---|---|
Resumo |
2000 Mathematics Subject Classification: 26A33, 33C60, 44A15, 35K55 Denoting by Dα0|t the time-fractional derivative of order α (α ∈ (0, 1)) in the sense of Caputo, and by ∆H the Laplacian operator on the (2N + 1) - dimensional Heisenberg group H^N, we prove some nonexistence results for solutions to problems of the type Dα0|tu − ∆H(au) >= |u|^p, Dα0|tu − ∆H(au) >= |v|^p, Dδ0|tv − ∆H(bv) >= |u|^q, in H^N × R+ , with a, b ∈ L ∞ (H^N × R+). For α = 1 (and δ = 1 in the case of two inequalities), we retrieve the results obtained by Pohozaev-Véron [10] and El Hamidi-Kirane [3] corresponding, respectively, to the parabolic inequalities and parabolic system. |
Identificador |
Fractional Calculus and Applied Analysis, Vol. 12, No 1, (2009), 01p-14p 1311-0454 |
Idioma(s) |
en |
Publicador |
Institute of Mathematics and Informatics Bulgarian Academy of Sciences |
Palavras-Chave | #Fractional Derivatives #Heisenberg Group #Semilinear Differential Inequalities #26A33 #33C60 #44A15 #35K55 |
Tipo |
Article |