13 resultados para short food supply chain
em Publishing Network for Geoscientific
Resumo:
Future ocean acidification (OA) will affect physiological traits of marine species, with calcifying species being particularly vulnerable. As OA entails high energy demands, particularly during the rapid juvenile growth phase, food supply may play a key role in the response of marine organisms to OA. We experimentally evaluated the role of food supply in modulating physiological responses and biomineralization processes in juveniles of the Chilean scallop, Argopecten purpuratus, that were exposed to control (pH 8.0) and low pH (pH 7.6) conditions using three food supply treatments (high, intermediate, and low). We found that pH and food levels had additive effects on the physiological response of the juvenile scallops. Metabolic rates, shell growth, net calcification, and ingestion rates increased significantly at low pH conditions, independent of food. These physiological responses increased significantly in organisms exposed to intermediate and high levels of food supply. Hence, food supply seems to play a major role modulating organismal response by providing the energetic means to bolster the physiological response of OA stress. On the contrary, the relative expression of chitin synthase, a functional molecule for biomineralization, increased significantly in scallops exposed to low food supply and low pH, which resulted in a thicker periostracum enriched with chitin polysaccharides. Under reduced food and low pH conditions, the adaptive organismal response was to trade-off growth for the expression of biomineralization molecules and altering of the organic composition of shell periostracum, suggesting that the future performance of these calcifiers will depend on the trajectories of both OA and food supply. Thus, incorporating a suite of traits and multiple stressors in future studies of the adaptive organismal response may provide key insights on OA impacts on marine calcifiers.
Resumo:
Temora longicornis, a dominant calanoid copepod species in the North Sea, is characterised by low lipid reserves and high biomass turnover rates. To survive and reproduce successfully, this species needs continuous food supply and thus requires a highly flexible digestive system to exploit various food sources. Information on the capacity of digestive enzymes is scarce and therefore the aim of our study was to investigate the enzymatic capability to respond to quickly changing nutritional conditions. We conducted two feeding experiments with female T. longicornis from the southern North Sea off Helgoland. In the first experiment in 2005, we tested how digestive enzyme activities and enzyme patterns as revealed by substrate SDS-PAGE (sodium dodecylsulfate polyacrylamide gel electrophoresis) responded to changes in food composition. Females were incubated for three days fed ad libitum with either the heterotrophic dinoflagellate Oxyrrhis marina or the diatom Thalassiosira weissflogii. At the beginning and at the end of the experiment, copepods were deep-frozen for analyses. The lipolytic enzyme activity did not change over the course of the experiment but the enzyme patterns did, indicating a distinct diet-induced response. In a second experiment in 2008, we therefore focused on the enzyme patterns, testing how fast changes occur and whether feeding on the same algal species leads to similar patterns. In this experiment, we kept the females for 4 days at surplus food while changing the algal food species daily. At day 1, copepods were offered O. marina. On day 2, females received the cryptophycean Rhodomonas baltica followed by T. weissflogii on day 3. On day 4 copepods were again fed with O. marina. Each day, copepods were frozen for analysis by means of substrate SDS-PAGE. This showed that within 24 h new digestive enzymes appeared on the electrophoresis gels while others disappeared with the introduction of a new food species, and that the patterns were similar on day 1 and 4, when females were fed with O. marina. In addition, we monitored the fatty acid compositions of the copepods, and this indicated that specific algal fatty acids were quickly incorporated. With such short time lags between substrate availability and enzyme response, T. longicornis can successfully exploit short-term food sources and is thus well adapted to changes in food availability, as they often occur in its natural environment due seasonal variations in phyto- and microzooplankton distribution.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
In the maritime Antarctic, brown skuas (Catharacta antarctica lonnbergi) show two foraging strategies: some pairs occupy feeding territories in penguin colonies, while others can only feed in unoccupied areas of a penguin colony without defending a feeding territory. One-third of the studied breeding skua population in the South Shetlands occupied territories of varying size (48 to >3,000 penguin nests) and monopolised 93% of all penguin nests in sub-colonies. Skuas without feeding territories foraged in only 7% of penguin sub-colonies and in part of the main colony. Females owning feeding territories were larger in body size than females without feeding territories; no differences in size were found in males. Territory holders permanently controlled their resources but defence power diminished towards the end of the reproductive season. Territory ownership guaranteed sufficient food supply and led to a 5.5 days earlier egg-laying and chick-hatching. Short distances between nest and foraging site allowed territorial pairs a higher nest-attendance rate such that their chicks survived better (71%) than chicks from skua pairs without feeding territories (45%). Due to lower hatching success in territorial pairs, no difference in breeding success of pairs with and without feeding territories was found in 3 years. We conclude that skuas owning feeding territories in penguin colonies benefit from the predictable and stable food resource by an earlier termination of the annual breeding cycle and higher offspring survivorship.
Resumo:
A multidisciplinary study was undertaken at the Qijurittuq Site (IbGk-3) on Drayton Island in Low-Arctic Quebec (Canada) to document the relationships between climatic, environmental, and cultural changes and the choice of Thule/Inuit dwelling style in the eastern Arctic. Several marine terraces were 14C-dated with shells in order to reconstruct the area's uplift (glacioisostatic rebound) curve. Plant macrofossil analysis of peat was conducted to reconstruct past vegetation and, indirectly, past climate. Archaeological surveys and excavations characterized the structure of subterranean sod houses at the Qijurittuq Site and were supplemented with open interviews with Inuit elders for a better understanding of site location and the use of household space. The sites selected for habitation were well-drained sandy marine terraces in a valley sheltered from prevailing winds. Sod houses were in turn made possible by the abundance of driftwood on the island and the presence of nearby peatland. Thule/Inuit people used semi-subterranean houses rather than igloos at the Qijurittuq Site during the dry, cold conditions toward the end of the Little Ice Age. Stable environmental conditions and food supply during winter possibly explain the use of those semipermanent houses on Drayton Island. However, it does not exclude the use of igloos during short expeditions on ice.
Resumo:
The structure of the zooplankton foodweb and their dominant carbon fluxes were studied in the upwelling system off northern Chile (Mejillones Bay; 23°S) between October 2000 and December 2002. High primary production (PP) rates (18 gC/m**2 d) were mostly due to the net-phytoplankton size fraction (>23 µm). High PP has been traditionally associated with the wind-driven upwelling fertilizing effect of equatorial subsurface waters, which favour development of a short food chain dominated by a few small clupeiform fish species. The objective of the present work was to study the trophic carbon flow through the first step of this 'classical chain' (from phytoplankton to primary consumers such as copepods and euphausiids) and the carbon flow towards the gelatinous web composed of both filter-feeding and carnivorous zooplankton. To accomplish this objective, feeding experiments with copepods, appendicularians, ctenophores, and chaetognaths were conducted using naturally occurring plankton prey assemblages. Throughout the study, the total carbon ingestion rates showed that the dominant appendicularian species and small copepods consumed an average of 7 and 5 µgC/ind d, respectively. In addition, copepods ingested particles mainly in the size range of nano- and microplankton, whereas appendicularians ingested in the range of pico- and nanoplankton. Small copepods and appendicularians removed a small fraction of total daily PP (range 6-11%). However, when the pico- + nanoplankton fractions were the major contributors to total PP (oligotrophic conditions), grazing by small copepods increased markedly to 86% of total PP. Under these more oligotrophic conditions, the euphausiids grazing increased as well, but only reached values lower than 5% of total PP. During this study, chaetognaths and ctenophores ingested an average of 1 and 14 copepods/ind d, respectively. In terms of biomass consumed, the potential impact of carnivorous gelatinous zooplankton on the small-size copepod community (preferred prey) was important (2-12% of biomass removed daily). However, their impact produced more significant results on copepod abundance (up to 33%), which suggests that carnivorous gelatinous zooplankton may even modulate (control) the abundance of some species as well as the size structure of the copepod community.
Resumo:
Ocean acidification is expected to decrease calcification rates of bivalves. Nevertheless in many coastal areas high pCO2 variability is encountered already today. Kiel Fjord (Western Baltic Sea) is a brackish (12-20 g kg-1) and CO2 enriched habitat, but the blue mussel Mytilus edulis dominates the benthic community. In a coupled field and laboratory study we examined the annual pCO2 variability in this habitat and the combined effects of elevated pCO2 and food availability on juvenile M. edulis growth and calcification. In the laboratory experiment, mussel growth and calcification were found to chiefly depend on food supply, with only minor impacts of pCO2 up to 3350 µatm. Kiel Fjord was characterized by strong seasonal pCO2 variability. During summer, maximal pCO2 values of 2500 µatm were observed at the surface and >3000 µatm at the bottom. However, the field growth experiment revealed seven times higher growth and calcification rates of M. edulis at a high pCO2 inner fjord field station (mean pCO2 ca. 1000 µatm) in comparison to a low pCO2 outer fjord station (ca. 600 µatm). In addition, mussels were able to outcompete the barnacle Amphibalanus improvisus at the high pCO2 site. High mussel productivity at the inner fjord site was enabled by higher particulate organic carbon concentrations. Kiel Fjord is highly impacted by eutrophication, which causes bottom water hypoxia and consequently high seawater pCO2. At the same time, elevated nutrient concentrations increase the energy availability for filter feeding organisms such as mussels. Thus M. edulis can dominate over a seemingly more acidification resistant species such as A. improvisus. We conclude that benthic stages of M. edulis tolerate high ambient pCO2 when food supply is abundant and that important habitat characteristics such as species interactions and energy availability need to be considered to predict species vulnerability to ocean acidification.
Resumo:
The biodiversity of pelagic deep-sea ecosystems has received growing scientific interest in the last decade, especially in the framework of international marine biodiversity initiatives, such as Census of Marine Life (CoML). While a growing number of deep-sea zooplankton species has been identified and genetically characterized, little information is available on the mechanisms minimizing inter-specific competition and thus allowing closely related species to co-occur in the deep-sea pelagic realm. Focussing on the two dominant calanoid copepod families Euchaetidae and Aetideidae in Fram Strait, Arctic Ocean, the present study strives to characterize ecological niches of co-occurring species, with regard to vertical distribution, dietary composition as derived from lipid biomarkers, and trophic level on the basis of stable isotope signatures. Closely related species were usually restricted to different depth layers, resulting in a multi-layered vertical distribution pattern. Thus, vertical partitioning was an important mechanism to avoid inter-specific competition. Species occurring in the same depth strata usually belonged to different genera. They differed in fatty acid composition and trophic level, indicating different food preferences. Herbivorous Calanus represent major prey items for many omnivorous and carnivorous species throughout the water column. The seasonal and ontogenetic vertical migration of Calanus acts as a short-cut in food supply for pelagic deep-sea ecosystems in the Arctic.
Resumo:
Seasonal distributions of ostracode species from the Bay of Kiel, western Baltic Sea (Bokniseck, 'Hausgarten') were studied at seven observation stations located between 6 - 23.5 m water depth. During the period from December 1973 to March 1975, 175 samples were taken every two weeks from the sediment surface at each station. Environmental factors were measured simultaneously with sampling. Most of the ostracode species were present in all of the samples throughout the year; four species were found to be seasonal. On the other hand, the population densities of each of the examined ostracode species, as revealed by countings, indicate marked seasonal variations. These variations are attributed to changes in length rate and timing of the reproductive cycles of the different ostracode species, effected mainly by food supply. Maxima in the abundance of the ostracode species with short (1/2 - 1 month) life cycles, occurred simultaneously with peaks of food supply in spring and autumn, whereas the maxima abundance of ostracodes with longer (10 - 12 months) life cycles was delayed.
Resumo:
Benthic foraminiferal assemblages and the carbon isotope composition of the epifaunal benthic foraminifera Epistominella exigua and Fontbotia wuellerstorfi have been investigated along core MD02-2589 located at the southern Agulhas Plateau (41°26.03'S, 25°15.30'E, 2660 m water depth). This study aims to evaluate changes in the benthic paleoenvironment and its influence on benthic d13C with a notable focus on E. exigua, a species associated with phytodetritus deposits and poorly studied in isotope paleoceanographic reconstructions. The benthic foraminiferal assemblages (>63 µm) show large fluctuations in species composition suggesting significant changes in the pattern of ocean surface productivity conceivably related to migrations of the Subtropical Convergence (STC) and Subantarctic Front (SAF). Low to moderate seasonality and relatively higher food supply to the seafloor are indicated during glacial marine isotope stages (MIS) 6, 4, and 2 and during MIS 3, probably associated with the northward migration of the SAF and confluence with the more stationary STC above the southern flank of the Agulhas Plateau. The lowest organic carbon supply to the seafloor is indicated from late MIS 5b to MIS 4 as a consequence of increased influence of the Agulhas Front (AF) and/or weakening of the influence of the STC over the region. Episodic delivery of fresh organic matter, similar to modern conditions at the core location, is indicated during MIS 5c-MIS 5e and at Termination I. Comparison of this paleoenvironmental information with the paired d13C records of E. exigua and F. wuellerstorfi suggests that organic carbon offsets d13C of E. exigua from ambient bottom water d13CDIC, while its d13C amplitude, on glacial-interglacial timescales, does not seem affected by changes of organic carbon supply to the seafloor. This suggests that this species calcifies preferentially during the short time span of the year when productivity peaks and phytodetritus is delivered to the seafloor. Therefore E. exigua, while offset from d13CDIC, potentially more faithfully records the amplitude of ambient bottom water d13CDIC changes than F. wuellerstorfi, notably in settings such as the Southern Ocean that experienced substantial changes through time in the organic carbon supply to the seafloor.
Resumo:
Two main mechanisms are controlling the accumulation of organic matter in the sediments of the Kara Sea. The large rivers Ob and Yenisei supply significant quantities of freshwater onto the shelf (Lisitsyn and Vinogradov, 1995; Bobrovitskaya et al., 1996; Johnson et al., 1997) and deliver terrigenous organie matter and aquatic algae. Additionally, marine organic matter is produced in the water column. In order to distinguish between the different sources of the organic material maceral analysis, organic-geochemical bulk Parameters and biomarkers (short- and long-chain D-alkanes, fatty acids and pigments) were used to determine the quality (marine vs. terrigenous) and quantity of the organic carbon fraction in the surface sediments taken during the 28th cruise of RV Akademik Boris Petrov (Matthiessen and Stepanets, 1998) (Fig. 1). Previous organic-geochemical investigations (i.e., total organic-carbon content (TOC), hydrogen indices (Hl), CIN-ratios) indicate the importance of terrigenous input of organic matter (Galimov et al., 1996; Stein, 1996). Studies of lipid biomarkers in surface sediments in the Ob estuary show also a predominance of terrestrial constituents and an increase in planktonogenic and bacterial lipids further offshore (Belyaeva and Eglinton, 1997). In complex systems such as the Eurasian continental margin characterized by high input of terrestriallaquatic organic matter and strong seasonal variation in sea-ice Cover and primary productivity, the Interpretation of the organic geochemical data is much more complicated and restricted in comparison to similar data Sets from low-latitude open-ocean environments (Fahl and Stein, 1998). Microscopical studies (maceral analysisl palynology), however, allow a direct visual inspection of the particulate organic matter and allow to differentiate particles of different biological sources. Thus, a combination of both methods as shown in this study, yields a more precise identification of organic-carbon sources.
Resumo:
Understanding the ecology of bioindicators such as ostracods is essential in order to reconstruct past environmental and climate change from analysis of fossil assemblages preserved in lake sediment cores. Knowledge of the ecology of ancient Lake Ohrid's ostracod fauna is very limited and open to debate. In advance of the Ohrid ICDP-Drilling project, which has potential to generate high-resolution long-term paleoenvironmental data of global importance in paleoclimate research, we sampled Lake Ohrid and a wide range of habitat types in its surroundings to assess 1) the composition of ostracod assemblages in lakes, springs, streams, and short-lived seasonal water bodies, 2) the geographical distribution of ostracods, and 3) the ecological characteristics of individual ostracod species. In total, 40 species were collected alive, and seven species were preserved as valves and empty carapaces. Of the 40 ostracod species, twelve were endemic to Lake Ohrid. The most common genus in the lake was Candona, represented by 13 living species, followed by Paralimnocythere, represented by five living species. The most frequent species was Cypria obliqua. Species with distinct distributions included Heterocypris incongruens, Candonopsis kingsleii, and Cypria lacustris. The most common species in shallow, flooded areas was H. incongruens, and the most prominent species in ditches was C. kingsleii. C. lacustris was widely distributed in channels, springs, lakes, and rivers. Statistical analyses were performed on a "Lake Ohrid" dataset, comprising the subset of samples from Lake Ohrid alone, and an "entire" dataset comprising all samples collected. The unweighted pair group mean average (UPGMA) clustering was mainly controlled by species-specific depth preferences. Canonical Correspondence Analysis (CCA) with forward selection identified water depth, water temperature, and pH as variables that best explained the ostracod distribution in Lake Ohrid. The lack of significance of conductivity and dissolved oxygen in CCA of Ohrid data highlight the uniformity across the lake of the well-mixed waters. In the entire area, CCA revealed that ostracod distribution was best explained by water depth, salinity, conductivity, pH, and dissolved oxygen. Salinity was probably selected by CCA due to the presence of Eucypris virens and Bradleystrandesia reticulata in short-lived seasonal water bodies. Water depth is an important, although indirect, influence on ostracod species distribution which is probably associated with other factors such as sediment texture and food supply. Some species appeared to be indicators for multiple environmental variables, such as lake level and water temperature.
Resumo:
Fifty short sediment cores collected with a multiple corer and five box cores from the central Arctic Ocean were analysed to study the ecology and distribution of benthic foraminifers. To work out living faunal associations, standing stock and diversity, separate analyses of living (Rose Bengal stained) and dead foraminifers were carried out for the sediment surface. The size fractions between 63 and 125 µm and >125 µm were counted separately to allow comparison with former Arctic studies and with studies from the adjacent Norwegian-Greenland Sea, Barents Sea and the North Atlantic Ocean. Benthic foraminiferal associations are mainly controlled by the availability of food, and competition for food, while water mass characteristics, bottom current activity, substrate composition, and water depth are of minor importance. Off Spitsbergen in seasonally ice-free areas, high primary production rates are reflected by high standing stocks, high diversities, and foraminiferal associations (>125 µm) that are similar to those of the Norwegian-Greenland Sea. Generally, in seasonally ice-free areas standing stock and diversity increase with increasing food supply. In the central Arctic Ocean, the oligotrophic permanently ice-covered areas are dominated by epibenthic species. The limited food availability is reflected by very low standing stocks and low diversities. Most of these foraminiferal associations do not correspond to those of the Norwegian-Greenland Sea. The dominant associations include simple agglutinated species such as Sorosphaerae, Placopsilinellae, Komokiacea and Aschemonellae, as well as small calcareous species such as Stetsonia horvathi and Epistominella arctica. Those of the foraminiferal species that usually thrive under seasonally ice-free conditions in middle bathyal to lower bathyal water depth are found under permanently ice-covered conditions in water depths about 1000 m shallower, if present at all.