260 resultados para sand flats

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total of 167 samples distubuted throughout the CRP-3 drillhole from 5.77 to 787.68 mbsf and representing fine to coarse sandstones have been analysed by X-ray fluorescence spectrometry (XRF) Bulk sample geochemistry (major and trace elements) indicates a dominant provenance of detritus from the Ferrar Supergroup in the uppermost 200 mbsf of the core. A markedly increased contribution from the Beacon sandstones is recognized below 200 mbsf and down to 600 mbsf. In the lower part of CRP-3, down to 787.68 mbsf, geochemical evidence for influxes of Ferrar materials is again recorded. On the basis of preliminary magnetostratigraphic data reported for the lower 447 mbsf of the drillhole, we tentatively evaluated the main periodicities modulating the geochemical records. Our results identify a possible influence of the precession, obliquity and long-eccentricity astronomical components (21, 41, and 400 ky frequency bands) on the deposition mechanisms of the studied glaciomarine sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Persian Gulf and the Gulf of Oman marl forms the primary sediment cover, particularly on the Iranian side. A detailed quantitative description of the sediment components > 63 µ has been attempted in order to establish the regional distribution of the most important constituents as well as the criteria governing marl sedimentation in general. During the course of the analysis, the sand fraction from about 160 bottom-surface samples was split into 5 phi° fractions and 500 to 800 grains were counted in each individual fraction. The grains were cataloged in up to 40 grain type catagories. The gravel fraction was counted separately and the values calculated as weight percent. Basic for understanding the mode of formation of the marl sediment is the "rule" of independent availability of component groups. It states that the sedimentation of different component groups takes place independently, and that variation in the quantity of one component is independent of the presence or absence of other components. This means, for example, that different grain size spectrums are not necessarily developed through transport sorting. In the Persian Gulf they are more likely the result of differences in the amount of clay-rich fine sediment brought in to the restricted mouth areas of the Iranian rivers. These local increases in clayey sediment dilute the autochthonous, for the most part carbonate, coarse fraction. This also explains the frequent facies changes from carbonate to clayey marl. The main constituent groups of the coarse fraction are faecal pellets and lumps, the non carbonate mineral components, the Pleistocene relict sediment, the benthonic biogene components and the plankton. Faecal pellets and lumps are formed through grain size transformation of fine sediment. Higher percentages of these components can be correlated to large amounts of fine sediment and organic C. No discernable change takes place in carbonate minerals as a result of digestion and faecal pellet formation. The non-carbonate sand components originate from several unrelated sources and can be distinguished by their different grain size spectrum; as well as by other characteristics. The Iranian rivers supply the greatest amounts (well sorted fine sand). Their quantitative variations can be used to trace fine sediment transport directions. Similar mineral maxima in the sediment of the Gulf of Oman mark the path of the Persian Gulf outflow water. Far out from the coast, the basin bottoms in places contain abundant relict minerals (poorly sorted medium sand) and localized areas of reworked salt dome material (medium sand to gravel). Wind transport produces only a minimal "background value" of mineral components (very fine sand). Biogenic and non-biogenic relict sediments can be placed in separate component groups with the help of several petrographic criteria. Part of the relict sediment (well sorted fine sand) is allochthonous and was derived from the terrigenous sediment of river mouths. The main part (coarse, poorly sorted sediment), however, was derived from the late Pleistocene and forms a quasi-autochthonous cover over wide areas which receive little recent sedimentation. Bioturbation results in a mixing of the relict sediment with the overlying younger sediment. Resulting vertical sediment displacement of more than 2.5 m has been observed. This vertical mixing of relict sediment is also partially responsible for the present day grain size anomalies (coarse sediment in deep water) found in the Persian Gulf. The mainly aragonitic components forming the relict sediment show a finely subdivided facies pattern reflecting the paleogeography of carbonate tidal flats dating from the post Pleistocene transgression. Standstill periods are reflected at 110 -125m (shelf break), 64-61 m and 53-41 m (e.g. coare grained quartz and oolite concentrations), and at 25-30m. Comparing these depths to similar occurrences on other shelf regions (e. g. Timor Sea) leads to the conclusion that at this time minimal tectonic activity was taking place in the Persian Gulf. The Pleistocene climate, as evidenced by the absence of Iranian river sediment, was probably drier than the present day Persian Gulf climate. Foremost among the benthonic biogene components are the foraminifera and mollusks. When a ratio is set up between the two, it can be seen that each group is very sensitive to bottom type, i.e., the production of benthonic mollusca increases when a stable (hard) bottom is present whereas the foraminifera favour a soft bottom. In this way, regardless of the grain size, areas with high and low rates of recent sedimentation can be sharply defined. The almost complete absence of mollusks in water deeper than 200 to 300 m gives a rough sedimentologic water depth indicator. The sum of the benthonic foraminifera and mollusca was used as a relative constant reference value for the investigation of many other sediment components. The ratio between arenaceous foraminifera and those with carbonate shells shows a direct relationship to the amount of coarse grained material in the sediment as the frequence of arenaceous foraminifera depends heavily on the availability of sand grains. The nearness of "open" coasts (Iranian river mouths) is directly reflected in the high percentage of plant remains, and indirectly by the increased numbers of ostracods and vertebrates. Plant fragments do not reach their ultimate point of deposition in a free swimming state, but are transported along with the remainder of the terrigenous fine sediment. The echinoderms (mainly echinoids in the West Basin and ophiuroids in the Central Basin) attain their maximum development at the greatest depth reached by the action of the largest waves. This depth varies, depending on the exposure of the slope to the waves, between 12 to 14 and 30 to 35 m. Corals and bryozoans have proved to be good indicators of stable unchanging bottom conditions. Although bryozoans and alcyonarian spiculae are independent of water depth, scleractinians thrive only above 25 to 30 m. The beginning of recent reef growth (restricted by low winter temperatures) was seen only in one single area - on a shoal under 16 m of water. The coarse plankton fraction was studied primarily through the use of a plankton-benthos ratio. The increase in planktonic foraminifera with increasing water depth is here heavily masked by the "Adjacent sea effect" of the Persian Gulf: for the most part the foraminifera have drifted in from the Gulf of Oman. In contrast, the planktonic mollusks are able to colonize the entire Persian Gulf water body. Their amount in the plankton-benthos ratio always increases with water depth and thereby gives a reliable picture of local water depth variations. This holds true to a depth of around 400 m (corresponding to 80-90 % plankton). This water depth effect can be removed by graphical analysis, allowing the percentage of planktonic mollusks per total sample to be used as a reference base for relative sedimentation rate (sedimentation index). These values vary between 1 and > 1000 and thereby agree well with all the other lines of evidence. The "pteropod ooze" facies is then markedly dependent on the sedimentation rate and can theoretically develop at any depth greater than 65 m (proven at 80 m). It should certainly no longer be thought of as "deep sea" sediment. Based on the component distribution diagrams, grain size and carbonate content, the sediments of the Persian Gulf and the Gulf of Oman can be grouped into 5 provisional facies divisions (Chapt.19). Particularly noteworthy among these are first, the fine grained clayey marl facies occupying the 9 narrow outflow areas of rivers, and second, the coarse grained, high-carbonate marl facies rich in relict sediment which covers wide sediment-poor areas of the basin bottoms. Sediment transport is for the most part restricted to grain sizes < 150 µ and in shallow water is largely coast-parallel due to wave action at times supplemented by tidal currents. Below the wave base gravity transport prevails. The only current capable of moving sediment is the Persian Gulf outflow water in the Gulf of Oman.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accumulation rates for the five sites drilled during Leg 74 of the Glomar Challenger are presented on a common timescale based on calibration of datum levels to paleomagnetic records in Leg 74 sediments for the Paleogene, and a new compilation by Berggren et al. (1985), for the Neogene, and using the seafloor-spreading magnetic anomaly timescale of Kent (1985). We present data on accumulation of total sediment, of foraminifers, of the noncarbonate portion, and of fish teeth that give a history of productivity, winnowing, carbonate dissolution, and nonbiogenic input to what was then a part of the South Atlantic at about 30 deg S.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

50 m of Middle Eocene pure radiolarian ooze were drilled at ODP Site 660 in the equatorial East Atlantic, 80 km northeast of the Kane Gap. The oozes comprise a 10 m high and 2 km broad mound of seismic reverberations, covered by manganese-rich sediment, and contain trace amounts of sponge spicules and diatoms, negligible organic carbon (0.15%), clay, and variable amounts of pyrite. The yellow to pale brown silty sediments are relatively coarse-grained (30-45% coarser than 6 µm), little bioturbated, and commonly massive or laminated on a cm-scale. The unlithified radiolarian ooze may indicate an interval of high oceanic productivity, probably linked to a palaeoposition of Site 660 close to the equatorial upwelling belt during Middle Eocene time. The absence of organic matter, however, and both the laminated bedding and the mound-like structure of the deposit on the lower slope of a continental rise indicate deposition by relatively intense contour currents of oxygen-rich deep water, which passed through the Kane Gap, winnowed the fine clay fraction, and prevented the preservation of organic carbon. The ooze may be either a contourite-lag deposit, or a contourite accumulation of displaced radiolarians, originating south of the Kane Gap and being deposited in its northern lee, thus documenting the passage of a strong cross-equatorial bottom-water current formed near Antarctica. These Eocene contourites may be an analogue for ancient radiolarites in the Tethyan Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the NW-slope of Eckernforder Bay (Western Baltic) between 14 and 21 m water depth 7 sand cores were taken with a vibrocorer. The cores were between 85 and 250 cm long. The sand was analysed for grain size distribution, proportions of organic carbon and carbonate, and contents of microfossils. The radiometric age and stable carbon isotope ratios were determined on organic material from 14 sample. With regard to benthic foraminifera and other microorganisms four different types of depositional conditions could be distinguished: Types 1 and 2: two types of offshore sand areas. Type 3: lagoon and nearshore. Type 4: subaerial or limnic. Using sedimentological and geochemical parameters two formation areas could be distinguished with the aid of a discriminant analysis: offshore (types 1 and 2) and nearshore (types 3 and 4). A juxtaposition of core sections indicated two distinct profiles. Their ages fit into the picture of the assumed postglacial sea-level rise. The lagoon- and nearshore sands are interpreted as the result of sea-level stagnation at 17-18 m below present sea-level. The accumulation rates of the sand in the offshore areas are, with a maximum of 0.15 mm/yr., an order of magnitude smaller than in the mud areas, located several hundred metres away.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Site 1085 is located on the continental rise of southwest Africa at a water depth of 1713 m off the mouth of the Orange River in the Cape Basin. The site is part of the suite of locations drilled during Leg 175 on the Africa margin to reconstruct the onset and evolution of the elevated biological productivity associated with the Benguela Current upwelling system (Wefer, Berger, Richter, et al., 1998, doi:10.2973/odp.proc.ir.175.1998). Three sediment samples were collected per section from Cores 170-1085A-28H through 45X (251-419 mbsf) to provide a survey of the sediment record of paleoproductivity from the middle late Miocene to the early Pliocene (~8.7-4.7 Ma), which is a period that includes the postulated northward migration and intensification of the Benguela Current and the establishment of modern circulation off southwest Africa (Siesser, 1980; Diester-Haass et al., 1992; Berger et al., 1998). Core 170-1085A-30H (270-279 mbsf) had essentially no recovery; this coring gap was filled with samples from Cores 170-1085B-29H and 30H (261-280 mbsf). The results of measurements of multiple paleoproductivity proxies are summarized in this report. Included in these proxies are the radiolarian, foraminiferal, and echinoderm components of the sand-sized sediment fraction. Opal skeletons of radiolarians (no diatoms were found) relate to paleoproductivity and water mass chemistry (Summerhayes et al., 1995, doi:10.1016/0079-6611(95)00008-5; Lange and Berger, 1993, doi:10.2973/odp.proc.sr.130.011.1993; Nelson et al., 1995, doi:10.1029/95GB01070). The accumulation rates of benthic foraminifers are useful proxies for paleoproductivity (Herguera and Berger, 1991, doi:10.1130/0091-7613(1991)019<1173:PFBFAG>2.3.CO;2; Nees, 1997, doi:10.1016/S0031-0182(97)00012-6; Schmiedl and Mackensen, 1997, doi:10.1016/S0031-0182(96)00137-X) because these fauna subsist on organic matter exported from the photic zone. Echinoderms also depend mainly on food supply from the photic zone (Gooday and Turley, 1990), and their accumulation rates are an additional paleoproductivity proxy. Concentrations of calcium carbonate (CaCO3) and organic carbon in sediment samples are fundamental measures of paleoproductivity (e.g., Meyers, 1997, doi:10.1016/S0146-6380(97)00049-1). In addition, organic matter atomic carbon/nitrogen (C/N) ratios and delta13C values can be used to infer the origin of the organic matter contained within the sediments and to explore some of the factors affecting its preservation and accumulation (Meyers, 1994, doi:10.1016/0009-2541(94)90059-0).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One hundred and twenty point counts of Oligocene to Recent sands and sandstones from DSDP sites in the Japan and Mariana intraoceanic forearc and backarc basins demonstrate that there is a clear compositional difference between the continentally influenced Japan forearc and backarc sediments, and the totally oceanic Mariana forearc and backarc sediments. Japan forearc sediments average 10 QFL%Q, 0.82 P/F, 2 Framework%Mica, 74 LmLvLst%Lv, and 19 LmLvLst%Lst. In contrast, the Mariana forearc and backarc sediments average 0 QFL%Q, 1.00 P/F, 0 Framework%Mica, 98 LmLvLst%Lv, and 1 LmLvLst%Lst. Sediment compositions in the Japan region are variable. The Honshu forearc sediments average 5 QFL%Q, 0.94 P/F, 1 Framework%Mica, 82 LmLvLst%Lv, and 15 LmLvLst%Lst. The Yamato Basin sediments (DSDP Site 299) average 13 QFL%Q, 0.70 P/F, 3 Framework%Mica, 78 LmLvLst%Lv, and 14 LmLvLst%Lst. The Japan Basin sediments (DSDP Site 301) average 24 QFL%Q, 0.54 P/F, 9 Framework%Mica, 58 LmLvLst%Lv, and 21 LmLvLst%Lst. P/F and Framework%Mica are higher in the Yamato Basin sediments than in the forearc sediments due to an increase in modal potassium content of volcanic rocks from east to west, on the island of Honshu. Site 301 possesses a higher QFL%Q and LmLvLst%Lst, and lower LmLvLst%Lv than Site 299 because it receives sediment from the Asian mainland as well as the island of Honshu. DSDP Site 293 sediments, in the Mariana region, average 0.97 P/F, 1 Framework%Mica, 13 LmLvLst%Lm and 83 LmLvLst%Lv, due to their proximity to the island of Luzon. The remaining Mariana forearc and backarc sediments show a uniform composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Im Sedimentationsraum der südwestlichen Ostsee verdient der nordöstliche Teil der Kieler Bucht besonderes Interesse. Dort öffnet sich die wichtigste Verbindung zwischen Ostsee und Nordsee. Von den Austauschvorgängen, durch welche diese Meeresräume aufeinander Einfluß nehmen, ist gerade jenes Gebiet entscheidend betroffen. Die Beobachtung der Dynamik des Austausches, die Beobachtung der Transportlast, welche von den Wassermassen bewegt wird, und schließlich auch die Beobachtung der Beziehungen, welche sich zwischen dem Zusammentreffen von Wassermassen unterschiedlicher physikalischer Eigenschaften und der Sedimentbildung ergeben, läßt deshalb vor allem dort wesentliche Hinweise zum Verständnis der Sedimentationsvorgänge in der südlichen Ostsee erhoffen. In der vorliegenden Arbeit wurden an 49 Durchschnittsproben die Korngrößenverteilungen und Schwermineralgehalte von Sedimenten aus dem Südausgang des Großen Beltes untersucht. 1. Es wurden sechs in sich morphologisch etwa gleichwertige Gebiete ausgegliedert, die jeweils durch Sedimente mit ähnlichen Korngrößenverteilungen ausgezeichnet sind. Nach Lage, Typ und genetischer Ausdeutbarkeit fügen sich diese Gebiete dem von O. PRATJE (1939, 1948) gegebenen Modell der Sedimentationszonen gut ein. 2. Innerhalb dieser Gebiete ergibt sich für Sande in mehr als 20 m Wassertiefe südwärts gerichteter Transport. Oberhalb dieser Tiefe läßt sich stellenweise nordwärts gerichteter Transport nachweisen. 3. Der Schwermineralgehalt der Sedimente bleibt immer unter zwei Prozent. Die höchsten Anteile (1,7 bzw. 1,9%) werden in den Sedimenten der Tiefen Rinne und der ufernahen Bereiche des Großen Beltes angetroffen. 4. Die Korngrößenverteilungen der Sedimente werden nach der Lage der Modi in bis zu drei (Kies-, Sand-, Silt-) Komponenten zerlegt. Die Beteiligung der Silt-Komponente wird entscheidend von der Salzgehaltssprungschicht beeinflußt. 5. Es bestehen offensichtlich Zusammenhänge zwischen der Schlicksedimentation und der Salzgehaltsschichtung auch in der weiteren südlichen Ostsee.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand the late Cenozoic glacial history of the Northern Hemisphere, continuous long-term proxy records from climatically sensitive regions must be examined. Ice-rafted debris (IRD) from Ocean Drilling Program (ODP) Site 918, located in the Irminger Basin, is one such record. IRD in marine sediments is a direct indicator of the presence of glacial ice extending to sea level on adjacent landmasses, and, therefore, is an important paleoclimatic signal from the mid- to high latitudes. The IRD record at Site 918 is the first long-term ice-rafting record available for southeast Greenland, a region that may have been a key nucleation area for widespread glaciation during the late Cenozoic (Larsen et al, 1994, doi:10.2973/odp.proc.ir.152.1994). This data report presents the results of coarse sand-size IRD mass accumulation rate (MAR) analyses for Site 918 from the late Miocene through the Pleistocene. In addition, a preliminary analysis of IRD compositions is included. Detailed discussions of the local, regional, and global paleoclimatic implications of this data, and of the companion Site 919 Pleistocene IRD MAR data (Krissek, 1999, doi:10.2973/odp.proc.sr.163.118.1999), are in preparation. Such future work will include comparisons of these IRD MAR data sets to the Site 919 oxygen isotope stratigraphy developed by Flower (1998, doi:10.2973/odp.proc.sr.152.219.1998).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Wadden Sea is located in the southeastern part of the North Sea forming an extended intertidal area along the Dutch, German and Danish coast. It is a highly dynamic and largely natural ecosystem influenced by climatic changes and anthropogenic use of the North Sea. Changes in the environment of the Wadden Sea, natural or anthropogenic origin, cannot be monitored by the standard measurement methods alone, because large-area surveys of the intertidal flats are often difficult due to tides, tidal channels and unstable underground. For this reason, remote sensing offers effective monitoring tools. In this study a multi-sensor concept for classification of intertidal areas in the Wadden Sea has been developed. Basis for this method is a combined analysis of RapidEye (RE) and TerraSAR-X (TSX) satellite data coupled with ancillary vector data about the distribution of vegetation, mussel beds and sediments. The classification of the vegetation and mussel beds is based on a decision tree and a set of hierarchically structured algorithms which use object and texture features. The sediments are classified by an algorithm which uses thresholds and a majority filter. Further improvements focus on radiometric enhancement and atmospheric correction. First results show that we are able to identify vegetation and mussel beds with the use of multi-sensor remote sensing. The classification of the sediments in the tidal flats is a challenge compared to vegetation and mussel beds. The results demonstrate that the sediments cannot be classified with high accuracy by their spectral properties alone due to their similarity which is predominately caused by their water content.