69 resultados para run-of-river

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex geological-geochemical studies of water column and bottom sediments were carried out during Cruise 49 of R/V "Dmitry Mendeleev" in the Kara Sea shelf zone along the Obskaya Guba (Ob River estuary) from the Pur River and Taz River mouths to 76°N. Carbon-14 concentrations in organic matter from bottom sediments were determined at 5 stations. Constant initial 14C concentration model was used to determine sedimentation rates that were taken as a basis for calculating ages of sediment cores and their separate parts and for inferring location of a depocenter, i.e. a region of maximal discharge of fine-dispersed fraction of suspended matter of river run-off. Sedimentation rate in the depocenter is 170 cm/ka. Southward moves of the depocenter were recorded for periods of sea-level rises 2 and 5 thousand years ago. Bottom sediments in the depocenter contain 45% of organic matter primary produced in the Obskaya Guba. This organic matter is an energetic basis for bottom fauna life. About 55% of organic matter comes with river run-off.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contents and distribution of particulate lipids were studied by thin-layer chromatography technique with flame ionization detection (Iatroscan TH-10) along the transect from the Ob River towards the Kara Sea. Lipid contents range from 18.4 to 266 µg/l with, average 84.97 µg/l, which comprises from 4.06 to 58.32 % of total particulate organic matter. Principal constituents of particulate lipids are hydrocarbons (32.14 % of total lipids on the average), polar compounds (29.85 %), wax and sterol esters (13.04 %), and mono- and diglycerides (12.52 %). Secondary components are presented by fatty acid esters (5.14 %), free fatty acids (4.56 %), triglycerides (2.32 %), and sterols (1.04 %). Specific composition of particulate lipids along the Ob River - Kara Sea transect is formed under strong impact of river run-off. Particulate lipid composition reflects differences between processes of organic matter transformation in estuarine and marine parts of the transect, as well as peculiarities of species composition of Arctic living organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a long tradition of river monitoring using macroinvertebrate communities to assess environmental quality in Europe. A promising alternative is the use of species life-history traits. Both methods, however, have relied on the time-consuming identification of taxa. River biotopes, 1-100 m**2 'habitats' with associated species assemblages, have long been seen as a useful and meaningful way of linking the ecology of macroinvertebrates and river hydro-morphology and can be used to assess hydro-morphological degradation in rivers. Taxonomic differences, however, between different rivers had prevented a general test of this concept until now. The species trait approach may overcome this obstacle across broad geographical areas, using biotopes as the hydro-morphological units which have characteristic species trait assemblages. We collected macroinvertebrate data from 512 discrete patches, comprising 13 river biotopes, from seven rivers in England and Wales. The aim was to test whether river biotopes were better predictors of macroinvertebrate trait profiles than taxonomic composition (genera, families, orders) in rivers, independently of the phylogenetic effects and catchment scale characteristics (i.e. hydrology, geography and land cover). We also tested whether species richness and diversity were better related to biotopes than to rivers. River biotopes explained 40% of the variance in macroinvertebrate trait profiles across the rivers, largely independently of catchment characteristics. There was a strong phylogenetic signature, however. River biotopes were about 50% better at predicting macroinvertebrate trait profiles than taxonomic composition across rivers, no matter which taxonomic resolution was used. River biotopes were better than river identity at explaining the variability in taxonomic richness and diversity (40% and <=10%, respectively). Detailed trait-biotope associations agreed with independent a priori predictions relating trait categories to near river bed flows. Hence, species traits provided a much needed mechanistic understanding and predictive ability across a broad geographical area. We show that integration of the multiple biological trait approach with river biotopes at the interface between ecology and hydro-morphology provides a wealth of new information and potential applications for river science and management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pioneer information about chemical composition of river waters in the Wrangel Island has been obtained. It is shown that water composition reflects the lithogeochemical specifics of primary rocks and ore mineralization. In contrast to many areas of the Russian Far North river waters of the island are characterized by elevated background value of total mineralization (i.e., total dissolved solids, TDS) (0.3-2 g/l) and specific chemical type (SO4-Ca-Mg). This is related to abundance of Late Carboniferous gypsiferous and dolomitic sequences in the mountainous area of the island. It has also been established that salt composition of some streams is appreciably governed by supergene alterations of sulfide mineralization associated with quartz-carbonate vein systems. They make up natural centers of surface water contamination. Waters in such streams are characterized by low pH values (2.4-5.5), high TDS (up to 6-23 g/l) and SO4-Mg composition. These waters are also marked by anomalously high concentrations of heavy and non-ferrous metals, as well as REE, U, and Th.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A conceptual scheme for the transition from winter to spring is developed for a small Arctic estuary (Churchill River, Hudson Bay) using hydrological, meteorological and oceanographic data together with models of the landfast ice. Observations within the Churchill River estuary and away from the direct influence of the river plume (Button Bay), between March and May 2005, show that both sea ice (production and melt) and river water influence the region's freshwater budget. In Button Bay, ice production in the flaw lead or polynya of NW Hudson Bay result in salinization through winter until the end of March, followed by a gradual freshening of the water column through April-May. In the Churchill Estuary, conditions varied abruptly throughout winter-spring depending on the physical interaction among river discharge, the seasonal landfast ice, and the rubble zone along the seaward margin of the landfast ice. Until late May, the rubble zone partially impounded river discharge, influencing the surface salinity, stratification, flushing time, and distribution and abundance of nutrients in the estuary. The river discharge, in turn, advanced and enhanced sea ice ablation in the estuary by delivering sensible heat. Weak stratification, the supply of riverine nitrogen and silicate, and a relatively long flushing time (~6 days) in the period preceding melt may have briefly favoured phytoplankton production in the estuary when conditions were still poor in the surrounding coastal environment. However, in late May, the peak flow and breakdown of the ice-rubble zone around the estuary brought abrupt changes, including increased stratification and turbidity, reduced marine and freshwater nutrient supply, a shorter flushing time, and the release of the freshwater pool into the interior ocean. These conditions suppressed phytoplankton productivity while enhancing the inventory of particulate organic matter delivered by the river. The physical and biological changes observed in this study highlight the variability and instability of small frozen estuaries during winter-spring transition, which implies sensitivity to climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the generally oligotroph Arctic marine environment river outlets are favoured by many planktonic and benthic organisms due to their high input of organic carbon. The retention of pelagic larvae within nursery grounds and/or the ability to return to their parental grounds prior to settlement is one important factor for the persistence of benthic communities in such river influenced areas. The southern Kara Sea is strongly controlled by high freshwater inputs from the Ob and Yenisei Rivers, which create a pronounced bi-layered pycnocline with a warm fresh/brackish water layer on top and a cold high saline marine layer below. The dispersal of five meroplanktonic species and settled juveniles (the brittle star Ophiocten sericeum, and the polychaetes Micronephtys minuta, Nereimyra aphroditoides, Phyllodoce groenlandica and Prionospio cirrifera) in relation to the adult distribution patterns was investigated. For all apart from P. cirrifera the highest densities of larvae were found in the upper brackish water layer. To assess size-at-settlement, the body sizes of larvae and newly settled juveniles were estimated and compared. Dispersal patterns ranged from virtually no adaption to river run-off as in the common, stenohaline O. sericeum and M. minuta (7 ind./m**3, 459 µm) to local retention as in N. aphroditoides (7 ind./m**3, 541 µm) and P. groenlandica (0.5 ind./m**3, 1121 µm) retained by horizontal eddies created by the outflow. Adults of P. cirrifera, which were exclusively restricted to the estuary of the Yenisei River, showed a well adapted reproductive behaviour to ensure a high retention potential of their progenies. The larvae (1.5 ind./m**3, 1513 µm) were only present in the lower water layers, most probably taking advantage of the prevailing near bottom counter current retaining them within their hatching areas.

Relevância:

100.00% 100.00%

Publicador: