Macroinvertebrate abundance and proportion of trait categories in river biotopes across England and Wales


Autoria(s): Demars, Benoit OL; Kemp, Joanna L; Friberg, Nikolai; Usseglio-Polatera, Philippe; Harper, David M
Cobertura

MEDIAN LATITUDE: 52.573314 * MEDIAN LONGITUDE: -1.596514 * SOUTH-BOUND LATITUDE: 51.294000 * WEST-BOUND LONGITUDE: -3.986000 * NORTH-BOUND LATITUDE: 54.213000 * EAST-BOUND LONGITUDE: 0.662000

Data(s)

15/03/2012

Resumo

There is a long tradition of river monitoring using macroinvertebrate communities to assess environmental quality in Europe. A promising alternative is the use of species life-history traits. Both methods, however, have relied on the time-consuming identification of taxa. River biotopes, 1-100 m**2 'habitats' with associated species assemblages, have long been seen as a useful and meaningful way of linking the ecology of macroinvertebrates and river hydro-morphology and can be used to assess hydro-morphological degradation in rivers. Taxonomic differences, however, between different rivers had prevented a general test of this concept until now. The species trait approach may overcome this obstacle across broad geographical areas, using biotopes as the hydro-morphological units which have characteristic species trait assemblages. We collected macroinvertebrate data from 512 discrete patches, comprising 13 river biotopes, from seven rivers in England and Wales. The aim was to test whether river biotopes were better predictors of macroinvertebrate trait profiles than taxonomic composition (genera, families, orders) in rivers, independently of the phylogenetic effects and catchment scale characteristics (i.e. hydrology, geography and land cover). We also tested whether species richness and diversity were better related to biotopes than to rivers. River biotopes explained 40% of the variance in macroinvertebrate trait profiles across the rivers, largely independently of catchment characteristics. There was a strong phylogenetic signature, however. River biotopes were about 50% better at predicting macroinvertebrate trait profiles than taxonomic composition across rivers, no matter which taxonomic resolution was used. River biotopes were better than river identity at explaining the variability in taxonomic richness and diversity (40% and <=10%, respectively). Detailed trait-biotope associations agreed with independent a priori predictions relating trait categories to near river bed flows. Hence, species traits provided a much needed mechanistic understanding and predictive ability across a broad geographical area. We show that integration of the multiple biological trait approach with river biotopes at the interface between ecology and hydro-morphology provides a wealth of new information and potential applications for river science and management.

Formato

application/zip, 2 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.777728

doi:10.1594/PANGAEA.777728

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY-NC: Creative Commons Attribution-NonCommercial 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Demars, Benoit OL; Kemp, Joanna L; Friberg, Nikolai; Usseglio-Polatera, Philippe; Harper, David M (2012): Linking biotopes to invertebrates in rivers: biological traits, taxonomic composition and diversity. Ecological Indicators, 23, 301-311, doi:10.1016/j.ecolind.2012.04.011

Palavras-Chave #% of total dispersal types (macroinvertebrates); % of total feeding modes (macroinvertebrates); % of total food types (macroinvertebrates); % of total life cycle duration types (macroinvertebrates); % of total locomotion and substrate relation (macroinvertebrates); % of total reproduction types (macroinvertebrates); % of total resistance forms (macroinvertebrates); % of total respiration types (macroinvertebrates); % of total size types (macroinvertebrates); % of total stages (macroinvertebrates); > 8 cm; 0.25-0.5 cm; 0.5-1 cm; 0-0.25 cm; 1-2 cm; 2-4 cm; 4-8 cm; Absorb; Absorber abundance; Acroloxus spp.; Adicella spp.; Adult; Adult stages; Agabus spp.; against desiccation ; % of total resistance forms (macroinvertebrates); Agapetus spp.; Allogamus spp.; Anabolia spp.; Anacaena spp.; Ancylus spp.; Anisoptera; Anodonta spp.; Aphelocheirus spp.; Asellus spp.; Astacus spp.; Atherix spp.; Athripsodes spp.; Austropotamobius spp.; Avon_River; Baetidae; Baetis spp.; Bagous spp.; Beraea spp.; Beraeodes spp.; biotopes; Bithynia spp.; Bivalvia, Sphaeriidae; Bivalvia, Unionidae; Brachycentrus spp.; Brychius spp.; Burrower; Caenis spp.; Ceraclea spp.; Ceratopogonidae; Chaetarthria spp.; Chaetopteryx spp.; Chironom; Chironomidae; Coleoptera, Chrysomelidae; Coleoptera, Curculionidae; Coleoptera, Dryopidae; Coleoptera, Dytiscidae; Coleoptera, Elmidae; Coleoptera, Gyrinidae; Coleoptera, Haliplidae; Coleoptera, Helophoridae; Coleoptera, Hydraenidae; Coleoptera, Hydrophilidae; Corixidae; Crangonyx spp.; Crawler; Crenobia spp.; Crunoecia spp.; Crustacea, Asellidae; Crustacea, Astacidae; Crustacea, Crangonyctidae; Crustacea, Gammaridae; Culicidae; dead plant >= 1 mm; % of total food types (macroinvertebrates); Dendrocoelum spp.; Depos feeder abund; Deposit feeder abundance; Detr feeder abund; detritus < 1 mm; % of total food types (macroinvertebrates); Detritus feeder abundance; Dicranota spp.; Dinocras spp.; Diptera, Athericidae; Diptera, Ceratopogonidae; Diptera, Chironomidae; Diptera, Culicidae; Diptera, Dixidae; Diptera, Dolichopodidae; Diptera, Empididae; Diptera, Ephydridae; Diptera, Muscidae; Diptera, Pediciidae; Diptera, Psychodidae; Diptera, Rhagionidae; Diptera, Simuliidae; Diptera, Stratiomyidae; Diptera, Tabanidae; Diptera, Tipulidae; Disp air active; Disp air passive; Disp aqu active; Disp aqu passive; Dispersal aerial, active; Dispersal aerial, passive; Dispersal aquatic, active; Dispersal aquatic, passive; Dixidae; Dolichopodidae; Dove_River; Drusus spp.; Dryops spp.; Dugesia spp.; Dytiscinae; Ecclisopteryx spp.; Ecdyonurus spp.; Egg; Egg stages; Elmis spp.; Empididae; England; Ephemera spp.; Ephemerella spp.; Ephemeroptera, Baetidae; Ephemeroptera, Baetidae; excluding Baetis spp.; Ephemeroptera, Caenidae; Ephemeroptera, Ephemerellidae; Ephemeroptera, Ephemeridae; Ephemeroptera, Heptageniidae; Ephemeroptera, Leptophlebiidae; Ephydridae; Erpobdella spp.; Esolus spp.; Event; Feed macroinvert; Feed microinvert; Feed vertebrates; Filter feeder abundance; Filt feeder abund; Flying; Gammarus; Gastropoda, Acroloxidae; Gastropoda, Bithyniidae; Gastropoda, Hydrobiidae; Gastropoda, Lymnaeidae; Gastropoda, Neritidae; Gastropoda, Physidae; Gastropoda, Planorbidae; Gastropoda, Valvatidae; Gastropoda, Viviparidae; Gerris spp.; Gill resp; Gill respiration; Glossiphonia spp.; Glossosoma spp.; Glyphotaelius spp.; Goera spp.; Gordiidae; Gyrinidae; Habrophlebia spp.; Halesus spp.; Haliplus spp.; Hebrus spp.; Helobdella spp.; Helochares spp.; Helophorus spp.; Hemiclepsis spp.; Hemiptera, Aphelocheiridae; Hemiptera, Corixidae; Hemiptera, Gerridae; Hemiptera, Hebridae; Hemiptera, Hydrometridae; Hemiptera, Mesoveliidae; Hemiptera, Nepidae; Hemiptera, Notonectidae; Hemiptera, Veliidae; Heptagenia spp.; Hirudinea, Erpobdellidae; Hirudinea, Glossiphoniidae; Hirudinea, Piscicolidae; Hydracarina, Hydracarina; Hydracarina spp.; Hydraena spp.; Hydrobia spp.; Hydrobius spp.; Hydrometra spp.; Hydroporus spp.; Hydropsyche spp.; Hydroptila spp.; Hydrostatic vesicle respiration; Hygrotus spp.; Ilybius spp.; Interstitial; Isoperla spp.; Label; Laccobius spp.; Laccophilus spp.; Larva; Larval stages; Lasiocephala spp.; LC/a < 1; LC/a = 1; LC/a > 1; LC <= 1 a; LC > 1 a; Lepidostoma spp.; Leuctra spp.; Life cycle <= 1 year; Life cycle > 1 year; Life cycles per year < 1; Life cycles per year = 1; Life cycles per year > 1; Limnephilus spp.; Limnius spp.; Locomotion: crawler; Locomotion: flying; Locomotion: full water swimmer; Locomotion: surface swimmer; Lymnaea spp.; Lype spp.; Macroinvertebate feeder abundance; Macrophyte feed; Macrophyte feeder abundance; Macroplea spp.; Maximal potential size > 8 cm; Maximal potential size 0.25-0.5 cm; Maximal potential size 0.5-1 cm; Maximal potential size 0-0.25 cm; Maximal potential size 1-2 cm; Maximal potential size 2-4 cm; Maximal potential size 4-8 cm; Megaloptera, Sialidae; Megasternum spp.; Melampophylax spp.; Mercuria spp.; Mesovelia spp.; Metalype spp.; Microinvertebrate feeder abundance; Microorganism feeder abundance; Microorg feed; Microphyte feed; Microphyte feeder abundance; Molanna spp.; Muscidae; Mystacides spp.; Nebrioporus spp.; Nematomorpha, Gordiidae; Nemoura spp.; Nepa spp.; Notonecta spp.; Ochthebius spp.; Odonata/Anisoptera, Anisoptera; Odonata/Zygoptera, Zygoptera; Odontocerum spp.; Oecetis spp.; Oligochaeta; Oligochaeta, Oligochaeta; Oreodytes spp.; Oulimnius spp.; Paraleptophlebia spp.; Paras; Parasite abundance; Perla spp.; Perlodes spp.; Perm attached; Phryganea spp.; Physa spp.; Pierc; Piercer abundance; Piscicola spp.; Pisidium spp.; Planaria spp.; Planorbis spp.; Plant debris feed; Plant debris feeder abundance; Plastron resp; Plastron respiration; Platambus spp.; Plecoptera, Leuctridae; Plecoptera, Nemouridae; Plecoptera, Perlidae; Plecoptera, Perlodidae; Plecoptera, Taeniopterygidae; Polycelis spp.; Polycentropus spp.; Potamophylax spp.; Potamopyrgus spp.; potential; % of total life cycle number types (macroinvertebrates); Pred; Predator abundance; Protonemura spp.; Psychodidae; Psychomyia spp.; Pupa; Pupa stages; Reprod asexual; Reprod cem clutch; Reprod cem eggs; Reprod clutch ter; Reprod clutch veg; Reprod free clutch; Reprod free eggs; Reprod ovoviv; Reproduction asexual; Reproduction by cemented, isolated eggs; Reproduction by cemented or fixed clutches; Reproduction by clutches in vegetation; Reproduction by free, isolated eggs; Reproduction by free clutches; Reproduction by terrestrial clutches; Reproduction ovovivipar; Resistance forms cocoons; Resistance forms diapause or dormancy; Resistance forms eggs, statoblasts; Resistance forms housings; Resistance forms none; Resist f cocoon; Resist f diapause; Resist f eggs; Resist f house; Resist f none; Rhagionidae; Rhithrogena spp.; Rhyacophila spp.; Riolus spp.; RIVER; Samp com; Sample code/label; Sample comment; Sampling river; Scavenger; Scavenger abundance; Scrap; Scraper abundance; Sericostoma spp.; Shred; Shredder abundance; Sialis spp.; Silo spp.; Simuliidae; Smite_River; Sphaerium spp.; Spiracle respiration; Spriacle resp; Stenophylax spp.; Stictotarsus spp.; Stratiomyidae; Substrate relation: burrower; Substrate relation: interstitial; Substrate relation: permanently attached; Substrate relation: temporarily attached; Surf swimmer; Swale_River; Swimmer; Tabanidae; Taeniopteryx spp.; Tegument resp; Tegument respiration; Teifi_River; Temp attached; Theodoxus spp.; Theromyzon spp.; Tinodes spp.; Tipulidae; Trichoptera, Beraeidae; Trichoptera, Brachycentridae; Trichoptera, Glossosomatidae; Trichoptera, Goeridae; Trichoptera, Hydropsychidae; Trichoptera, Hydroptilidae; Trichoptera, Lepidostomatidae; Trichoptera, Leptoceridae; Trichoptera, Limnephilidae; Trichoptera, Molannidae; Trichoptera, Odontoceridae; Trichoptera, Philopotamidae; Trichoptera, Phryganeidae; Trichoptera, Polycentropodidae; Trichoptera, Psychomyiidae; Trichoptera, Rhyacophilidae; Trichoptera, Sericostomatidae; Tricladida, Dendrocoelidae; Tricladida, Dugesiidae; Tricladida, Planariidae; Valvata spp.; Velia spp.; Vertebrate feeder abundance; Vesicle resp; Viviparus spp.; Wales; Welland_River; Wissey_River; Wormaldia spp.; Zygoptera
Tipo

Dataset