88 resultados para hydrogenated amorphous silicon
em Publishing Network for Geoscientific
Resumo:
Data on composition of aerosols are considered. Investigations include electron microscopy, grain size, mineralogical and chemical analyses. Samples of aerosols were collected Cruise 37 of R/V Akademik Mstislav Keldysh along a transatlantic section along 40°-50°N. Variability of concentrations and composition of aerosols with distance from continents is shown: concentrations of aerosols decrease by factor of ten and more. Significant portion of mineral components in aerosols collected over the continent is replaced by organic matter due to mechanical differentiation during transportation. Such anthropogenic components as soot, ash, and combustion spheres were detected in all samples. North African dust was found in one sample in the western part of the section.
Resumo:
The four holes (including a re-entry hole) drilled at Site 433 allow determination of the sedimentary sequence of Suiko Seamount in the Emperor chain. The holes are in a small graben basin situated within a lateral lagoon on the seamount. The sedimentary deposits range from the Paleocene to the upper Pliocene and are not uniform and continuous. A major hiatus exists at the top of the lower Eocene reef sediment, below the lower and upper Miocene pelagic sediments. The depositional history and succession of environments are shown by mineralogical and geochemical changes in the sediments.
Resumo:
The mineralogical and geochemical study of samples from Sites 642, 643, and 644 enabled us to reconstruct several aspects of the Cenozoic paleoenvironmental evolution (namely volcanism, climate, hydrology) south of the Norwegian Sea and correlate it with evolution trends in the northeast Atlantic. Weathering products of early Paleogene volcanic material at Rockall Plateau, over the Faeroe-Iceland Ridge and the Voring Plateau indicate a hot and moist climate (lateritic environment) existed then. From Eocene to Oligocene, mineralogical assemblages of terrigenous sediments suggest the existence of a warm but somewhat less moist climate at that time than during the early Paleogene. At the beginning of early Miocene, climatic conditions were warm and damp. The large amounts of amorphous silica in Miocene sediment could indicate an important flux of silica from the continent then, or suggest the formation of upwelling. Uppermost lower Miocene and middle to upper Miocene clay assemblages suggest progressive cooling of the climate from warm to temperate at that time. At the end of early Miocene, hydrological exchanges between the North Atlantic and the Norwegian Sea became intense and gave rise to an important change in the mineralogy of deposits. From Pliocene to Pleistocene, the variable mineralogy of deposits reflects alternating glacial/interglacial climatic episodes, a phenomenon observed throughout the North Atlantic.
Resumo:
The results of the analysis of samples of the Northern Dvina River's suspended particulate matter obtained by the sedimentation method from large water volumes in the periods of the spring high water and summer low water are presented. By the method of sequential leaching using different reagents, four fractions have been separated: the F1 is the sorbed complex and carbonates, the F2 is the amorphous hydroxides of Fe and Mn, the F3 is the form connected with the organic matter, and the F4 is the residual or silicate-detrital (inert) form. The data have shown that all ten elements determined were grouped with respect to the ratio of the distinguished forms: F4 is the predominant form for Al and Fe (73-88% of all the forms; however, the summer sample contains only 38% of this form of iron, and F2 is the predominant form for this period with 46.6%). As to Mn, the F1, F2, and F4 are nearly equally distributed in the spring high water samples, and only the F3 form is less important (5.4%). In the summer sample, the manganese sorbed complex is predominant (53.5%); for Cu, Ni, Cr, and Co, the inert F4 form is predominant (60-70%) in the sample of the spring suspended matter. The summer low water suspended matter has a lower F4 contribution (25-45%); for Zn, Pb, and Cd, the equal distribution of the forms in the spring samples is typical, while the summer suspended matter differs by the F2 form's predominance (53-61% for Zn and Pb). The main conclusion from the acquired data is that the geochemical mobility of all the studied elements, except for cadmium, in the summer low water suspended matter is higher than in the spring suspended matter. The more intensive biogeochemical processes in August, the high level of organic matter, and the higher contribution of phytoplankton lead to the intensification of the metals' geochemical activity in the Northern Dvina suspended matter in the end of the summer compared to the spring high water period when the physical processes are predominant over the biogeochemical ones due to the high speeds of the freshened waters flow.
Resumo:
Manganese nodules and manganese carbonate concretions occur in the upper 10-15 cm of the Recent sediments of Loch Fyne, Argyllshire in water depths of 180-200 m. The nodules are spherical, a few mm to 3 cm in diameter, and consist of a black, Mn-rich core and a thin, red, Fe-rich rim. The carbonate occurs as irregular concretions, 0.5-8 cm in size, and as a cement in irregular nodule and shell fragment aggregates. It partially replaces some nodule material and clastic silicate inclusions, but does not affect aragonitic and calcitic shell fragments. The nodules are approximately 75% pure oxides and contain 30% Mn and 4% Fe. In the cores, the principal mineral phase is todorokite, with a Mn/Fe ratio of 17. The rim consists of X-ray amorphous Fe and Mn oxides with a Mn/Fe ratio of 0.66. The cores are enriched, relative to Al, in K, Ba, Co, Mo, Ni and Sr while the rims contain more P, Ti, As, Pb, Y and Zn. The manganese carbonate has the composition (Mn47.7 Ca45.1 Mg7.2) CO3. Apart from Cu, all minor elements are excluded from significant substitution in the carbonate lattice. Manganese nodules and carbonates form diagenetically within the Recent sediments of Loch Fyne. This accounts for the high Mn/Fe ratios in the oxide phases and the abundance of manganese carbonate concretions. Mn concentrations in the interstitial waters of sediment cores are high (ca. 10 ppm) as also, by inference, are the dissolved carbonate concentrations.
Resumo:
The book presents results of comprehensive geological investigations carried out during Cruise 8 of R/V "Vityaz-2" to the western part of the Black Sea in 1984. Systematic studies in the Black Sea during about hundred years have not weakened interest in the sea. Lithological and geochemical studies of sediments in estuarine areas of the Danube and the Kyzyl-Irmak rivers, as well as in adjacent parts of the deep sea and some other areas were the main aims of the cruise. Data on morphological structures of river fans, lithologic and chemical compositions of sediments in the fans and their areal distribution, forms of occurrence of chemical elements, role of organic matter and gases in sedimentation and diagenesis are given and discussed in the book.
Resumo:
Using peridotite drilled during Ocean Drilling Program Leg 209, a series of enrichment cultures were initiated on board the ship to stimulate microbially enhanced dissolution of olivine. Dissolution was estimated by measured changes in dissolved Li and Si in the media through time (up to 709 days). The results suggest that there was no significant difference between the amounts of dissolved Li and Si in most of the inoculated microbial cultures compared to the control cultures. Alternative explanations for this are that 1. No microbes are living in the culture tubes that can affect the dissolution rates of olivine, 2. The control cultures have microbes effecting the dissolution of olivine as well as the inoculated cultures, 3. Not enough time has passed to build up a large enough microbial population to effect the dissolution of the olivine in the culture tubes, 4. Microbes act to suppress dissolution of olivine instead of enhancing dissolution, and 5. Abiotic dissolution overshadows microbially enhanced dissolution. Further work is required to test these alternatives.
Resumo:
Authigenic phosphorite crusts from the shelf off Peru (9°40°S to 13°30°S) consist of a facies with phosphatic coated grains covered by younger phosphatic laminite. The crusts are composed of carbonate fluorapatite, which probably formed via an amorphous precursor close to the sediment water interface as indicated by low F/P2O5 ratios, Sr and Ca isotopes, as well as rare earth element patterns agreeing with seawater-dominated fluids. Small negative Ce anomalies and U enrichment in the laminite suggest suboxic conditions close to the sediment-water interface during its formation. Increased contents of chalcophilic elements and abundant sulfide minerals in the facies with phosphatic coated grains as well as in the laminite denote sulfate reduction and, consequently, point to episodical development of anoxic conditions during phosphogenesis. The Peruvian phosphorites formed episodically over an extended period of time lasting from Middle Miocene to Pleistocene. Individual phosphatic coated grains show a succession of phosphatic layers with varying contents of organic matter and sulfide-rich phosphatic layers. Coated grains supposedly formed as a result of episodic suspension caused by high turbulence and shifting redox conditions. Episodic anoxia in the pore water induced pyritization in the outermost carbonate fluorapatite layer. Phosphatic coated grains were later transported to the place of crust formation, where subsequent laminite formation was favored under lower energy conditions. A similar succession of phosphatic layers with varying contents of organic matter and sulfide-rich layers in the laminite suggests a formation mechanism analogous to that of individual coated grains.
Resumo:
Marked variations in the chemical and mineralogical composition of sediments at Site 319 have occurred during the 15 My history of sedimentation at this site. The change in composition through time parallels the variability observed in surface sediments from various parts of the Nazca Plate and can be related to variations in the proportion of hydrothermal, hydrogenous, detrital and biogenous phases reaching this site at different times. Metal accumulation rates at Site 319 reach a maximum near the basement for most elements, suggesting a strong hydrothermal contribution during the early history of this site. The hydrothermal contribution decreased rapidly as Site 319 moved away from the spreading center, although a subtle increase in this source is detectable about the time spreading began on the East Pacific Rise. The most recent sedimentation exhibits a strong detritalhydrogenous influence. Post-depositional diagenesis of amorphous phases has converted them to ironrich smectite and well-crystallized goethite without significantly altering the bulk composition of the sediment.
Resumo:
In 2004, Integrated Ocean Drilling Program Expedition 302 (Arctic Coring Expedition, ACEX) to the Lomonosov Ridge drilled the first Central Arctic Ocean sediment record reaching the uppermost Cretaceous (~430 m composite depth). While the Neogene part of the record is characterized by grayish-yellowish siliciclastic material, the Paleogene part is dominated by biosiliceous black shale-type sediments. The lithological transition between Paleogene and Neogene deposits was initially interpreted as a single sedimentological unconformity (hiatus) of ~26 Ma duration, separating Eocene from Miocene strata. More recently, however, continuous sedimentation on Lomonosov Ridge throughout the Cenozoic was proclaimed, questioning the existence of a hiatus. In this context, we studied the elemental and mineralogical sediment composition around the Paleogene-Neogene transition at high resolution to reconstruct variations in the depositional regime (e.g. wave/current activity, detrital provenance, and bottom water redox conditions). Already below the hiatus, mineralogical and geochemical proxies imply drastic changes in sediment provenance and/or weathering intensity in the hinterland, and point to the existence of another, earlier gap in the sediment record. The sediments directly overlying the hiatus (the Zebra interval) are characterized by pronounced and abrupt compositional changes that suggest repeated erosion and re-deposition of material. Regarding redox conditions, euxinic bottom waters prevailed at the Eocene Lomonosov Ridge, and became even more severe directly before the hiatus. With detrital sedimentation rates decreasing, authigenic trace metals were highly enriched in the sediment. This continuous authigenic trace metal enrichment under persistent euxinia implies that the Arctic trace metal pool was renewed continuously by water mass exchange with the world ocean, so the Eocene Arctic Ocean was not fully restricted. Above the hiatus, extreme positive Ce anomalies are clear signs of a periodically well-oxygenated water column, but redox conditions were highly variable during deposition of the Zebra interval. Significant Mn enrichments only occur above the Zebra interval, documenting the Miocene establishment of stable oxic conditions in the Arctic Ocean. In summary, extreme and abrupt changes in geochemistry and mineralogy across the studied sediment section do not suggest continuous sedimentation at the Lomonosov Ridge around the Eocene-Miocene transition, but imply repeated periods of very low sedimentation rates and/or erosion.
Resumo:
Intensification of North Pacific Intermediate Water during the Younger Dryas and stadials of the last glacial episode has been advocated by Kennett and his colleagues based on studies of ventilation history in Santa Barbara Basin. Because Santa Barbara Basin is a semi-isolated marginal basin, this hypothesis requires testing in sequences on the upper continental margin facing the open-ocean of the Pacific. Ocean Drilling Program Site 1017 is located on the upper slope of southern California off Point Conception close to the entrance of Santa Barbara Basin, an ideal location to test the hypothesis of late Quaternary switching in intermediate waters. We examined chemical and mineral composition, sedimentary structures, and grain size of hemipelagic sediments representing the last 80 k.y. at this site to detect changes in behavior of intermediate waters. We describe distinct compositional and textual variations that appear to reflect changes in grain size in response to flow velocity fluctuations of bottom waters. Qualitative estimates of changes in degree of pyritization indicate better ventilation of bottom water during intervals of stronger bottom-water flow. Comparison between variations in the sediment parameters and the planktonic d18O record indicates intensified bottom-current activity during the Younger Dryas and stadials of marine isotope Stage 3. This result strongly supports the hypothesis of Kennett and his colleagues. Our investigation also suggests strong grain-size control on organic carbon content (and to less extent carbonate carbon content). This, in turn, suggests the possibility that organic carbon content of sediments, which is commonly used as an indicator of surface productivity, can be influenced by bottom currents.
Resumo:
The Ocean Drilling Program (ODP) Site 959 was drilled in the northern border of the Côte d'Ivoire-Ghana Ridge at a water depth of 2100 m. Pleistocene total thickness does not exceed 20 m. Winnowing processes resulted in a low accumulation rate and notable stratigraphic hiatuses. During the Late Pleistocene, bottom circulation was very active and controlled laminae deposition (contourites) which increased the concentration of glauconitic infillings of foraminifera, and of volcanic glass and blue-green grains more rarely, with one or several subordinate ferromagnesian silicates. Volcanic glass generally was X-ray amorphous and schematically classified as basic to intermediate (44-60% SiO2). Opal-A or opal-CT suggested the beginning of the palagonitisation process, and previous smectitic deposits may have been eroded mechanically. The blue-green grains presented two main types of mineralogic composition: (1) neoformed K, Fe-smectite associated with zeolite (like phillipsite) and unequal amounts of quartz and anorthite; (2) feldspathic grains dominated by albite but including quartz, volcanic glass and smectites as accessory components. They were more or less associated with the volcanic glass. On the basis of their chemical composition, the genetic relationship between the blue-green grains and the volcanic glass seemed to be obvious although some heterogeneous grains seemed to be primary ignimbrite and not the result of glass weathering. The most reasonable origin of these pyroclastic ejecta would be explosive events from the Cameroon Volcanic Ridge, especially from the Sao Thome and Principe Islands and Mount Cameroon area. This is supported both by grain geochemistry and the time of volcanic activity, i.e. Pleistocene. After westward wind transport (some 1200 km) and ash fall-out, the subsequent winnowing by bottom currents controlled the concentration of the volcanic grains previously disseminated inside the hemipelagic sediment. Palagonitisation, and especially phillipsite formation, may result from a relatively rapid reaction during burial diagenesis (<1 m.y.), in deep-sea deposits at relatively low sedimentation rate. However, it cannot be excluded that the weathering had begun widely on the Cameroon Ridge before the explosive event.
Resumo:
Analysis of pelagic clay samples from Sites 576, 578, and 581 shows that physical, acoustic, and electrical trends with increasing burial depth are related to mineralogical and diagenetic changes. The properties of interest are bulk density (roo), porosity (phi), compressional-wave velocity (Vp) and velocity anisotropy (Ap), and electrical resistivity (Ro) and resistivity anisotropy (Ar). In general, as demonstrated in particular for the brown pelagic clay, the increase in roo, Vp, Ro, and to a lesser extent Ap and Ar with increasing depth is primarily caused by decreasing phi (and water content) as a result of compaction. The mineralogy and chemistry of the pelagic clays vary as a function of burial depth at all three sites. These variations are interpreted to reflect changes in the relative importance of detrital and diagenetic components. Mineralogical and chemical variations, however, play minor roles in determining variations in acoustic and electrical properties of the clays with increasing burial depth.
Resumo:
Thirty-eight samples from DSDP Sites 549 to 551 were analyzed for major and minor components and trace element abundances. Multivariate statistical analysis of geochemical data groups the samples into two major classes: an organic-carbon- rich group (> 1% TOC) containing high levels of marine organic matter and certain trace elements (Cu, Zn, V, Ni, Co, Ba, and Cr) and an organic-carbon-lean group depleted in these components. The greatest organic and trace metal enrichments occur in the uppermost Albian to Turanian sections of Sites 549 to 551. Carbon-isotopic values of bulk carbonate for the middle Cenomanian section of Site 550 (2.35 to 2.70 per mil) and the upper Cenomanian-Turonian sections of Sites 549 (3.35 to 4.47 per mil) and 551 (3.13 to 3.72 per mil) are similar to coeval values reported elsewhere in the region. The relatively heavy d13C values from Sites 549 and 551 indicate that this interval was deposited during the global "oceanic anoxic event" that occurred at the Cenomanian/Turonian boundary. Variation in the d18O of bulk carbonate for Section 550B-18-1 of middle Cenomanian age suggests that paleosalinity and/or paleotemperature variations may have occurred concurrently with periodic anoxia at this site. Climatically controlled increases in surface-water runoff may have caused surface waters to periodically freshen, resulting in stable salinity stratification