6 resultados para blood response
em Publishing Network for Geoscientific
Resumo:
The impact of pCO2 driven ocean acidification on marine bivalve immunity remains poorly understood. To date, this impact has only been investigated in a few bivalve species and the underlying molecular mechanism remains unknown. In the present study, the effects of the realistic future ocean pCO2 levels (pH at 8.1, 7.8, and 7.4) on the total number of haemocyte cells (THC), phagocytosis status, blood cell types composition, and expression levels of twelve genes from the NF-kappa beta signaling and toll-like receptor pathways of a typical bottom burrowing bivalve, blood clam (Tegillarca granosa), were investigated. The results obtained showed that while both THC number and phagocytosis frequency were significantly reduced, the percentage of red and basophil granulocytes were significantly decreased and increased, respectively, upon exposure to elevated pCO2. In addition, exposure to pCO2 acidified seawater generally led to a significant down-regulation in the inducer and key response genes of NF-kappa beta signaling and toll-like receptor pathways. The results of the present study revealed that ocean acidification may hamper immune responses of the bivalve T. granosa which subsequently render individuals more susceptible to pathogens attacks such as those from virus and bacteria.
Resumo:
The impact of acute altitude exposure on pulmonary function is variable. A large inter-individual variability in the changes in forced expiratory flows (FEFs) is reported with acute exposure to altitude, which is suggested to represent an interaction between several factors influencing bronchial tone such as changes in gas density, catecholamine stimulation, and mild interstitial edema. This study examined the association between FEF variability, acute mountain sickness (AMS) and various blood markers affecting bronchial tone (endothelin-1, vascular endothelial growth factor (VEGF), catecholamines, angiotensin II) in 102 individuals rapidly transported to the South Pole (2835 m). The mean FEF between 25 and 75% (FEF25-75) and blood markers were recorded at sea level and after the second night at altitude. AMS was assessed using Lake Louise questionnaires. FEF25-75 increased by an average of 12% with changes ranging from -26 to +59% from sea level to altitude. On the second day, AMS incidence was 36% and was higher in individuals with increases in FEF25-75 (41 vs. 22%, P = 0.05). Ascent to altitude induced an increase in endothelin-1 levels, with greater levels observed in individuals with decreased FEF25-75. Epinephrine levels increased with ascent to altitude and the response was six times larger in individuals with decreased FEF25-75. Greater levels of endothelin-1 in individuals with decreased FEF25-75 suggest a response consistent with pulmonary hypertension and/or mild interstitial edema, while epinephrine may be upregulated in these individuals to clear lung fluid through stimulation of beta2-adrenergic receptors.
Resumo:
Unpredictable changes in the environment stimulate the avian hypothalamo-pituitary-adrenal axis to produce corticosterone, which induces behavioural and metabolic changes that enhance survival in the face of adverse environmental conditions. In addition to profound environmental perturbations, such as severe weather conditions and unpredictable food shortages, many Arctic-breeding birds are also confronted with chronic exposure to persistent organic pollutants (POPs), some of which are known to disrupt endocrine processes. This study investigated the adrenocortical function of a top predator in the Arctic marine environment, the glaucous gull (Larus hyperboreus). High concentrations of organochlo-rines, brominated flame retardants and metabolically-derived products in blood plasma of incubating glaucous gulls were associated with high baseline corticosterone concentrations in both sexes and a reduced stress response in males. Contaminant-related changes in corticosterone concentration occurred over and above differences in body condition and seasonal variation. Chronically high corticosterone concentrations and/or a compromised adrenocortical response to stress can have negative effects on the health of an individual. The results of the present study suggest that exposure to POPs may increase the vulnerability of glaucous gulls to environmental stressors and thus could potentially compromise their ability to adapt to the rapidly changing environmental conditions associated with climate change that are currently seen in the Arctic.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Oxygen equilibrium curves have been widely used to understand oxygen transport in numerous organisms. A major challenge has been to monitor oxygen binding characteristics and concomitant pH changes as they occur in vivo, in limited sample volumes. Here we report a technique allowing highly resolved and simultaneous monitoring of pH and blood pigment saturation in minute blood volumes. We equipped a gas diffusion chamber with a broad range fibre optic spectrophotometer and a micro-pH optode and recorded changes of pigment oxygenation along PO2 and pH gradients to test the setup. Oxygen binding parameters derived from measurements in only 15 µl of haemolymph from the cephalopod Octopus vulgaris showed low instrumental error (0.93%) and good agreement with published data. Broad range spectra, each resolving 2048 data points, provided detailed insight into the complex absorbance characteristics of diverse blood types. After consideration of photobleaching and intrinsic fluorescence, pH optodes yielded accurate recordings and resolved a sigmoidal shift of 0.03 pH units in response to changing PO2 from 0-21 kPa. Highly resolved continuous recordings along pH gradients conformed to stepwise measurements at low rates of pH changes. In this study we showed that a diffusion chamber upgraded with a broad range spectrophotometer and an optical pH sensor accurately characterizes oxygen binding with minimal sample consumption and manipulation. We conclude that the modified diffusion chamber is highly suitable for experimental biologists who demand high flexibility, detailed insight into oxygen binding as well as experimental and biological accuracy combined in a single set up.
Resumo:
The ongoing process of ocean acidification already affects marine life and, according to the concept of oxygen- and capacity limitation of thermal tolerance (OCLTT), these effects may be exacerbated at the boarders of the thermal tolerance window. We studied the effects of elevated CO2 concentrations on clapping performance and energy metabolism of the commercially important scallop Pecten maximus. Individuals were exposed for at least 30 days to 4°C (winter) or to 10°C (spring/summer) at either ambient (0.04 kPa, normocapnia) or predicted future PCO2 levels (0.11 kPa, hypercapnia). Cold (4°C) exposed groups revealed thermal stress exacerbated by PCO2 indicated by a high mortality overall and its increase from 55% under normocapnia to 90% under hypercapnia. We therefore excluded the 4°C groups from further experimentation. Scallops at 10°C showed impaired clapping performance following hypercapnic exposure. Force production was significantly reduced although the number of claps was unchanged between normo- and hypercapnia exposed scallops. The difference between maximal and resting metabolic rate (aerobic scope) of the hypercapnic scallops was significantly reduced compared to normocapnic animals, indicating a reduction in net aerobic scope. Our data confirm that ocean acidification narrows the thermal tolerance range of scallops resulting in elevated vulnerability to temperature extremes and impairs the animal's performance capacity with potentially detrimental consequences for its fitness and survival in the ocean of tomorrow.