52 resultados para blood gas analyses

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fractionation of the noble gases should occur during formation of a Structure I gas hydrate from water and CH4 such that CH4 hydrate is greatly enriched in Xenon. Noble gas concentrations and fractionation factors (F[4He], F[22Ne], F[86Kr], and F[132Xe] as well as R/Ra) were determined for eight gas hydrate specimens collected on Leg 164 to evaluate this theoretical possibility and to assess whether sufficient quantities of Xe are hosted in oceanic CH4 hydrate to account for Xe "missing" from the atmosphere. The simplest explanation for our results is that samples contain mixtures of air and two end-member gases. One of the end-member gases is depleted in Ne, but significantly enriched in Kr and Xe, as anticipated if the source of this gas involves fractionation during Structure I gas hydrate formation. However, although oceanic CH4 hydrate may be greatly enriched in Xe, simple mass balance calculations indicate that oceanic CH4 hydrate probably represents only a minor reservoir of terrestrial Xe. Noble gas analyses may play an important role in understanding the dynamics of gas hydrate reservoirs, but significantly more work is needed than presented here.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacterial and thermogenic hydrocarbons are present in the sorbed-gas fraction of Peru margin sediments. At Ocean Drilling Program (ODP) Sites 681, 682, 684, and 686, bacterial gases are restricted to the early diagenetic zones, where dissolved sulfate has been exhausted and methanogenesis occurs. Methane migrating into the sulfate zone at Sites 681, 684, 686, and possibly 682, has been consumed anaerobically by methanotrophs, maintaining the low concentrations and causing an isotope shift in d13C(CH4) to more positive values. Significant amounts of C2+ hydrocarbons occur at the shelf Sites 680/681, 684, and 686/687, where these hydrocarbons may be associated with hypersaline fluids. There is evidence at Site 679 that sorbed C2+ hydrocarbons may also have been transported by hypersaline fluids. This characteristic C2+ hydrocarbon signature in the sorbed-gas fractions of sediments at Site 679 is not reflected in data obtained using the conventional "free-," "canned-," or "headspace-gas" procedures. The molecular and isotope compositions of the sorbed-gas fraction indicate that this gas may have a thermogenic source and may have spilled over with the hypersaline fluids from the Salaverry Basin into the Lima Basin. These traces of thermogenic hydrocarbon gases are over-mature (about 1.5% Ro) and are discordant with the less-mature sediments in which they are found. This observation supports the migration of these hydrocarbons, possibly from continental sources. Sorbed-gas analyses may provide important geochemical information, in addition to that of the free-gases. Sorbed-gases are less sensitive to activities in the interstitial fluids, such as methanogenesis and methanotrophy, and may faithfully record the migration of hydrocarbons associated with hypersaline fluids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Leg 104 organic geochemistry program consisted of monitoring (a) hydrocarbon gases, (b) organic and inorganic carbon, and (c) parameters resulting from Rock-Eval pyrolysis at three sites on the Voring Plateau. The results amplify some of those obtained earlier on Deep Sea Drilling Project (DSDP) Leg 38. In a regional sense there is an inverse correlation between amounts of hydrocarbon gas and organic carbon. For example, significant concentrations of methane are present only at Site 644 in the inner part of the plateau where organic carbon contents are always less than 1%; in contrast, at Site 642 on the outer plateau, methane concentrations are very low (ppm range) whereas amounts of organic carbon approach 2%. Only at Site 644 are the environmental conditions such that methanogenesis is an active diagenetic process. Because of the importance of routine gas analyses to the Ocean Drilling Program (ODP), a procedure was devised to improve the use of Vacutainers for collection of gas samples. Comparison of methods for determining organic carbon showed that at Sites 643 and 644 Rock-Eval TOC could be used as a measure of organic carbon, but not at Site 642. Although no liquid or solid hydrocarbons were encountered at any of the sites, a catalog of potential organic geochemical contaminants was developed in anticipation of such a discovery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anthropogenic climate change confronts marine organisms with rapid trends of concomitant warming and CO2 induced ocean acidification. The survival and distribution of species partly depend on their ability to exploit their physiological plasticity during acclimatization. Therefore, in laboratory studies the effects of simulated future ocean acidification on thermal tolerance, energy metabolism and acid-base regulation capacity of the North Sea population of the blue mussel Mytilus edulis were examined. Following one month of pre-acclimation to 10 °C and control CO2 levels, mussels were exposed for two weeks to control and projected oceanic CO2 levels (390, 750 and 1120 µatm) before being subjected to a stepwise warming protocol between 10 °C and 31 °C (+ 3 °C each night). Oxygen consumption and heart rates, anaerobic metabolite levels and haemolymph acid-base status were determined at each temperature. CO2 exposure left oxygen consumption rate unchanged at acclimation temperature but caused a somewhat stronger increase during acute warming and thus mildly higher Q10-values than seen in controls. Interestingly, the thermally induced limitation of oxygen consumption rate set in earlier in normocapnic than in hypercapnic (1120 µatm CO2) mussels (25.2 °C vs. 28.8 °C), likely due to an onset of metabolic depression in the control group following warming. However, the temperature induced increase in heart rate became limited above 25 °C in both groups indicating an unchanged pejus temperature regardless of CO2 treatment. An upper critical temperature was reached above 28 °C in both treatments indicated by the accumulation of anaerobic metabolites in the mantle tissue, paralleled by a strong increase in haemolymph PCO2 at 31 °C. Ocean acidification caused a decrease in haemolymph pH. The extracellular acidosis remained largely uncompensated despite some bicarbonate accumulation. In all treatments animals developed a progressive warming-induced extracellular acidosis. A stronger pH drop at around 25 °C was followed by stagnating heart rates. However, normocapnic mussels enhanced bicarbonate accumulation at the critical limit, a strategy no longer available to hypercapnic mussels. In conclusion, CO2 has small effects on the response patterns of mussels to warming, leaving thermal thresholds largely unaffected. High resilience of adult North Sea mussels to future ocean acidification indicates that sensitivity to thermal stress is more relevant in shaping the response to future climate change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With global climate change, ocean warming and acidification occur concomitantly. In this study, we tested the hypothesis that increasing CO2 levels affect the acid-base balance and reduce the activity capacity of the Arctic spider crab Hyas araneus, especially at the limits of thermal tolerance. Crabs were acclimated to projected oceanic CO2 levels for 12 days (today: 380, towards the year 2100: 750 and 1,120 and beyond: 3,000 ?atm) and at two temperatures (1 and 4 °C). Effects of these treatments on the righting response (RR) were determined (1) at acclimation temperatures followed by (2) righting when exposed to an additional acute (15 min) heat stress at 12 °C. Prior to (resting) and after the consecutive stresses of combined righting activity and heat exposure, acid-base status and lactate contents were measured in the haemolymph. Under resting conditions, CO2 caused a decrease in haemolymph pH and an increase in oxygen partial pressure. Despite some buffering via an accumulation of bicarbonate, the extracellular acidosis remained uncompensated at 1 °C, a trend exacerbated when animals were acclimated to 4 °C. The additional combined exposure to activity and heat had only a slight effect on blood gas and acid-base status. Righting activity in all crabs incubated at 1 and 4 °C was unaffected by elevated CO2 levels or acute heat stress but was significantly reduced when both stressors acted synergistically. This impact was much stronger in the group acclimated at 1 °C where some individuals acclimated to high CO2 levels stopped responding. Lactate only accumulated in the haemolymph after combined righting and heat stress. In the group acclimated to 1 °C, lactate content was highest under normocapnia and lowest at the highest CO2 level in line with the finding that RR was largely reduced. In crabs acclimated to 4 °C, the RR was less affected by CO2 such that activity caused lactate to increase with rising CO2 levels. In line with the concept of oxygen and capacity limited thermal tolerance, all animals exposed to temperature extremes displayed a reduction in scope for performance, a trend exacerbated by increasing CO2 levels. Additionally, the differences seen between cold- and warm-acclimated H. araneus after heat stress indicate that a small shift to higher acclimation temperatures also alleviates the response to temperature extremes, indicating a shift in the thermal tolerance window which reduces susceptibility to additional CO2 exposure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ongoing process of ocean acidification already affects marine life and, according to the concept of oxygen- and capacity limitation of thermal tolerance (OCLTT), these effects may be exacerbated at the boarders of the thermal tolerance window. We studied the effects of elevated CO2 concentrations on clapping performance and energy metabolism of the commercially important scallop Pecten maximus. Individuals were exposed for at least 30 days to 4°C (winter) or to 10°C (spring/summer) at either ambient (0.04 kPa, normocapnia) or predicted future PCO2 levels (0.11 kPa, hypercapnia). Cold (4°C) exposed groups revealed thermal stress exacerbated by PCO2 indicated by a high mortality overall and its increase from 55% under normocapnia to 90% under hypercapnia. We therefore excluded the 4°C groups from further experimentation. Scallops at 10°C showed impaired clapping performance following hypercapnic exposure. Force production was significantly reduced although the number of claps was unchanged between normo- and hypercapnia exposed scallops. The difference between maximal and resting metabolic rate (aerobic scope) of the hypercapnic scallops was significantly reduced compared to normocapnic animals, indicating a reduction in net aerobic scope. Our data confirm that ocean acidification narrows the thermal tolerance range of scallops resulting in elevated vulnerability to temperature extremes and impairs the animal's performance capacity with potentially detrimental consequences for its fitness and survival in the ocean of tomorrow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deformation features within the cores are studied with a view towards elucidating the structure of the Middle America Trench along the transect drilled during Leg 67. Where possible, inferences are made as to the physical environment of deformation. Extensional tectonics prevails in the area of the seaward slope and trench. Fracturing and one well-preserved normal fault are found mostly within the lower Miocene chalks, at the base of the sedimentary section. These chalks have high porosities (40%-60%) and water content (30%-190%, based on % dry wt.). Experimental triaxial compression tests conducted on both dry and water-saturated samples of chalk from Holes 495 and 499B show that only in the saturated samples is more brittle behavior observed. Brittle failure of the chalks is greatly facilitated by pore fluid pressures that lead to low effective pressures. Additional embrittlement (weakening) can take place as a result of the imposed extensional stress resulting from bending of a subducting elastic oceanic plate. The chalks exhibit, in a landward direction, an increase in density and mechanical strength and a decrease in water content. These changes are attributed to mechanical compaction that may have resulted from tectonic horizontal compression. The structure of the landward slope is not well understood because the slope sites had to be abandoned due to the presence of gas hydrate. The relationship of the chaotic, brittle deformation (observed in the cores from Hole 494A) at the base of the landward slope to tectonic processes remains unclear. The deformation observed on the slope sites (Holes 496 and 497) is mostly fracturing and near-vertical sigmoidal veinlets. These are interpreted as being the result of gas/fluid overpressurization due to the decomposition of the gas hydrate, and not due to tectonic loading of accreted sediments. Aside from four small displacement (less than 1cm) reverse faults observed in the lower Miocene chalks (which may be the product of soft-sediment deformation), there is a noticeable absence of structures reflecting a dominance of horizontal (tectonic) compression along the transect drilled. The absence of such features, the lack of continuity of sediment types across the trench-landward slope, and the normal stratigraphic sequence in Hole 494A do not support any known accretionary model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The petroleum-generating potential of five samples from Hole 515B, Vema Channel, and of 23 samples from Hole 516F, Rio Grande Rise, was analyzed. Organic carbon and pyrolysis data indicated that source rocks of good quality are not present. Microscopic examination showed predominance of woody organic matter, which is more favorable for the generation of gas in a mature stage; all samples, however, are still thermally immature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I have evaluated shipboard data and preliminary interpretations related to organic geochemistry in light of additional shore-based analyses. Data on interstitial gas, the C/N ratio, and fluorescence indicate that organic matter was altered by sills and that these were all single intrusions except the upper sill complex at Site 481, which was a multiple emplacement. Site 477 had the highest in situ temperature, estimated from interstitial gas composition to be 225°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expedition 311 of the Integrated Ocean Drilling Program (IODP) to northern Cascadia recovered gas-hydrate bearing sediments along a SW-NE transect from the first ridge of the accretionary margin to the eastward limit of gas-hydrate stability. In this study we contrast the gas gas-hydrate distribution from two sites drilled ~ 8 km apart in different tectonic settings. At Site U1325, drilled on a depositional basin with nearly horizontal sedimentary sequences, the gas-hydrate distribution shows a trend of increasing saturation toward the base of gas-hydrate stability, consistent with several model simulations in the literature. Site U1326 was drilled on an uplifted ridge characterized by faulting, which has likely experienced some mass wasting events. Here the gas hydrate does not show a clear depth-distribution trend, the highest gas-hydrate saturation occurs well within the gas-hydrate stability zone at the shallow depth of ~ 49 mbsf. Sediments at both sites are characterized by abundant coarse-grained (sand) layers up to 23 cm in thickness, and are interspaced within fine-grained (clay and silty clay) detrital sediments. The gas-hydrate distribution is punctuated by localized depth intervals of high gas-hydrate saturation, which preferentially occur in the coarse-grained horizons and occupy up to 60% of the pore space at Site U1325 and > 80% at Site U1326. Detailed analyses of contiguous samples of different lithologies show that when enough methane is present, about 90% of the variance in gas-hydrate saturation can be explained by the sand (> 63 µm) content of the sediments. The variability in gas-hydrate occupancy of sandy horizons at Site U1326 reflects an insufficient methane supply to the sediment section between 190 and 245 mbsf.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unpredictable changes in the environment stimulate the avian hypothalamo-pituitary-adrenal axis to produce corticosterone, which induces behavioural and metabolic changes that enhance survival in the face of adverse environmental conditions. In addition to profound environmental perturbations, such as severe weather conditions and unpredictable food shortages, many Arctic-breeding birds are also confronted with chronic exposure to persistent organic pollutants (POPs), some of which are known to disrupt endocrine processes. This study investigated the adrenocortical function of a top predator in the Arctic marine environment, the glaucous gull (Larus hyperboreus). High concentrations of organochlo-rines, brominated flame retardants and metabolically-derived products in blood plasma of incubating glaucous gulls were associated with high baseline corticosterone concentrations in both sexes and a reduced stress response in males. Contaminant-related changes in corticosterone concentration occurred over and above differences in body condition and seasonal variation. Chronically high corticosterone concentrations and/or a compromised adrenocortical response to stress can have negative effects on the health of an individual. The results of the present study suggest that exposure to POPs may increase the vulnerability of glaucous gulls to environmental stressors and thus could potentially compromise their ability to adapt to the rapidly changing environmental conditions associated with climate change that are currently seen in the Arctic.