543 resultados para Western Mediterranean Oscillation

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

IBAMar (http://www.ba.ieo.es/ibamar) is a regional database that puts together all physical and biochemical data obtained by multiparametric probes (CTDs equipped with different sensors), during the cruises managed by the Balearic Center of the Spanish Institute of Oceanography (COB-IEO). It has been recently extended to include data obtained with classical hydro casts using oceanographic Niskin or Nansen bottles. The result is a database that includes a main core of hydrographic data: temperature (T), salinity (S), dissolved oxygen (DO), fluorescence and turbidity; complemented by bio-chemical data: dissolved inorganic nutrients (phosphate, nitrate, nitrite and silicate) and chlorophyll-a. In IBAMar Database, different technologies and methodologies were used by different teams along the four decades of data sampling in the COB-IEO. Despite of this fact, data have been reprocessed using the same protocols, and a standard QC has been applied to each variable. Therefore it provides a regional database of homogeneous, good quality data. Data acquisition and quality control (QC): 94% of the data are CTDs Sbe911 and Sbe25. S and DO were calibrated on board using water samples, whenever a Rossetta was available (70% of the cases). All CTD data from Seabird CTDs were reviewed and post processed with the software provided by Sea-Bird Electronics. Data were averaged to get 1 dbar vertical resolution. General sampling methodology and pre processing are described in https://ibamardatabase.wordpress.com/home/). Manual QC include visual checks of metadata, duplicate data and outliers. Automatic QC include range check of variables by area (north of Balearic Islands, south of BI and Alboran Sea) and depth (27 standard levels), check for spikes and check for density inversions. Nutrients QC includes a preliminary control and a range check on the observed level of the data to detect outliers around objectively analyzed data fields. A quality flag is assigned as an integer number, depending on the result of the QC check.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentration and isotopic composition of Nd in water and particles collected in the western Mediterranean Sea are studied by two complementary approaches. The first examines local vertical profiles and time series; the second considers the global Nd budget of the whole western Mediterranean Sea. These two approaches are used to quantify the Nd inputs and the dissolved/particulate exchange processes in the water column. Two profiles of Nd in seawater in the Ligurian Sea taken in May and October 1992 show an average epsilon-Nd(0) = -9.6 ± 0.5. Seawater from the Strait of Sicily, representative of the eastern waters flowing into the western basin, is more radiogenic [epsilon-Nd(0) = -7.7 ± 0.6]. Profiles of particulate matter collected in sediment traps in coastal (Gulf of Lions) and offshore (Ligurian Sea) environments are also shown. Particles are enriched in Nd and are more radiogenic near the coast than offshore. Measurements of Nd concentration and epsilon-Nd(0) of external sources to the western Mediterranean Sea compared with the literature data demonstrate that particulate flux of atmospheric Saharan origin are more rich ([Nd] = 38 ± 10 µg/g) and less radiogenic [epsilon-Nd(0) = -13.0 ± 1.0] than riverine particulate discharge ([Nd] = 21.5 ± 4.4 µg/g; epsilon-Nd(0) = -10.1 ± 0.5), allowing to trace Nd particulate inputs in the water column. Nd atmospheric flux appears to be the major source into the whole western basin, although lateral advection of riverine material is the prevailing process in the coastal environment. Offshore, the vertical propagation of an important Saharan dust event has been recorded for two months in sediment traps at 80, 200 and 1000 m. The evolution of the resulting negative epsilon-Nd(0) peak along depth and time shows that the particles reach 200 m on a time scale of one week. For the first time, the Nd budget in the western Mediterranean basin is constrained by both concentrations and isotopic compositions measured in particles and seawater. Surface budget requires a remobilization of 30 ± 20% of particulate Nd input. In deep water, dissolved Nd concentrations are balanced by a scavenging of 10 ± 20% of the sinking particulate flux. On the other hand, the deep isotopic compositions suggest an exchange between 30 ± 20% of the sinking particles and the deep waters. The hypothesis of a non-stationary regime for the surface waters in the Ligurian Sea is also considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-resolution sea surface temperature (SST) reconstruction of the western Mediterranean was accomplished using two independent, algae-based molecular organic proxies, i.e. the UK'37 index based on long-chain unsaturated ketones and the novel long-chain diol index (LDI) based on the relative abundances of C28 and C30 1,13- and 1,15-diols. Two marine records, from the western and eastern Alboran Sea basin, spanning the last 14 and 20 kyr, respectively, were studied. Results from the surface sediments suggest that the two proxies presently reflect seasons with similar SST, or simply annual mean SST. Both proxy records reveal the transition from the Last Glacial Maximum to the Holocene in the eastern Alboran Sea with an SST increase of ca. 7 °C for UK'37 and 9 °C for LDI. Minimum SSTs (10-12 °C) are reached at the end of the Last Glacial Maximum and during the last Heinrich event with a subsequent rapid SST increase in LDI-SST towards the beginning of the Bölling period (20 °C), while UK'37-SST remains constantly low (~12 °C). The Bölling-Alleröd is characterized by a rapid increase and subsequent decrease in UK'37-SST, while the LDI-SST decrease continuously. Short-term fluctuations in UK'37-SST are probably related to availability of nutrients and seasonal changes. The Younger Dryas is recorded as a short cold interval followed by progressively warmer temperatures. During the Holocene, the general lower UK'37-derived temperature values in the eastern Alboran (by ca. 1.5-2 °C) suggest a southeastward cold water migration by the western Alboran gyre and divergence in the haptophyte blooming season between both basins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of microhabitat, organic matter flux, and metabolism on the stable oxygen and carbon isotope composition of live (Rose Bengal stained) and dead (empty tests) deep-sea benthic foraminifera from the Gulf of Lions (western Mediterranean Sea) have been studied. The total range of observed foraminiferal isotope values exceeds 1.0 per mil for d18O and 2.2 per mil for d13C demonstrating a wide range of coexisting disequilibria relative to d18O of equilibrium calcite (d18OEQ) and d13C of bottom water dissolved inorganic carbon (d13CDIC). The mean d18O values reveal strongest disequilibria for the studied epifaunal to shallow infaunal species (Cibicidoides pachydermus, Uvigerina mediterranea, Uvigerina peregrina) while values approach equilibrium in deep infaunal species (Globobulimina affinis, Globobulimina pseudospinescens). The mean d13C values decrease with increasing average living depths of the different species, thus reflecting a dominant microhabitat (pore water) signal. At the axis of the Lacaze-Duthier Canyon a minimum d13CDIC pore water gradient of approximately -2.1 per mil is assessed for the upper 6 cm of the surface sediment. Although live individuals of U. mediterranea were found in different depth intervals their mean d13C values are consistent with calcification at an average living depth around 1 cm. The deep infaunal occurrence of U. mediterranea specimens suggests association with macrofaunal burrows creating a microenvironment with geochemical characteristics similar to the topmost centimeter. This also explains the excellent agreement between stable isotope signals of live and dead individuals. The ontogenetic enrichment in both d18O and d13C values of U. mediterranea suggests a slow-down of metabolic rates during test growth similar to that previously observed in planktic foraminifera. Enhanced organic carbon fluxes and higher proportion of resuspended terrestrial organic material at the canyon axis are reflected by d13C values of U. mediterranea on average 0.58 per mil lower than those from the open slope. These results demonstrate the general applicability of the d13C signal of this species for the reconstruction of past organic matter fluxes in the Mediterranean Sea. Further studies on live specimens are needed for a more quantitative paleoceanographic approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between mesoscale hydrodynamics and the distribution of large particulate matter (LPM, particles larger than 200 ?m) in the first 1000 m of the Western Mediterranean basin was studied with a microprocessor-driven CTD-video package, the Underwater Video Profiler (UVP). Observations made during the last decade showed that, in late spring and summer, LPM concentration was high in the coastal part of the Western Mediterranean basin at the shelf break and near the continental slope (computed maximum: 149 ?g C/l between 0 and 100 m near the Spanish coast of the Gibraltar Strait). LPM concentration decreased further offshore into the central Mediterranean Sea where, below 100 m, it remained uniformly low, ranging from 2 to 4 ?g C/l. However, a strong variability was observed in the different mesoscale structures such as the Almeria-Oran jet in the Alboran Sea or the Algerian eddies. LPM concentration was up to one order of magnitude higher in fronts and eddies than in the adjacent oligotrophic Mediterranean waters (i.e. 35 vs. 8 ?g C/l in the Alboran Sea or 16 vs. 3 ?g C/l in a small shear cyclonic eddy). Our observations suggest that LPM spatial heterogeneity generated by the upper layer mesoscale hydrodynamics extends into deeper layers. Consequently, the superficial mesoscale dynamics may significantly contribute to the biogeochemical cycling between the upper and meso-pelagic layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study uses a multiproxy approach in order to further understand the evolution of climate responses in the western Mediterranean as of the Last Glacial Maximum. Sediments from ODP Site 975 in the Algero-Balearic basin have been analysed at high resolution, both geochemically andmineralogicallly. The resulting data have been used as proxies to establish a sedimentary regime, primary marine productivity, the preservation of the proxies and oxygen conditions. Fluctuations in detrital element concentrations were mainly the consequence of wet/arid oscillations. Productivity has been established using Ba excess, according to which marine productivity appears to have been greatest during cold events Heinrich 1 and Younger Dryas. The S1 time interval was not as marked by increases in productivity as was the eastern Mediterranean. In contrast, the S1 interval was first characterized by a decreasing trend and then by a fall in productivity after the 8.2 ky BP dry-cold event. Since then productivity has remained low. Here we report that there was an important redox event in this basin, probably a consequence of the major oceanographic circulation change occurring in the western Mediterranean at 7.7 ky BP. This circulation change led to reventilation as well as to diagenetic remobilization of redox-sensitive elements and organic matter oxidation. Comparisons between our paleoceanographic reconstruction for this basin and those regarding other Mediterranean basins support the hypothesis that across the Mediterranean there were different types of responses to climate forcing mechanism. The Algero-Balearic basin is likely to be a key area for further understanding of the relationships between the North Atlantic and the eastern Mediterranean basins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The "SESAME_IT4_ZooAbundance_0-50-100m_SZN" dataset contains data of mesozooplankton species composition and abundance (ind./m**3) from samples collected in the Western Mediterranean in the early spring of 2008 (20 March-5 April) during the SESAME-WP2 cruise IT4. Samples were collected by vertical tows with a closing WP2 net (56 cm diameter, 200 µm mesh size) in the following depth layers: 100-200 m, 50-100 m, 0-50 m. Sampling was always performed in light hours. A flowmeter was applied to the mouth of the net, however, due to its malfunctioning, the volume of filtered seawater was calculated by multiplying the the area by the height of the sampled layer from winch readings. After collection, each sample was split in two halves (1/2) after careful mixing with graduated beakers. Half sample was immediately fixed and preserved in a formaldehyde-seawater solution (4% final concentration) for species composition and abundance. The other half sample was kept fresh for biomass measurements (data already submitted to SESAME database in different files). Here, only the zooplankton abundance of samples in the upper layers 0-50 m and 50-100 m are presented. The abundance data of the samples in the layer 50-100 m will be submitted later in a separate file. The volume of filtered seawater was estimated by multiplying the the area by the height of the sampled layer from winch readings. Identification and counts of specimens were performed on aliquots (1/20-1/5) of the fixed sample or on the total sample (half of the original sample) by using a graduate large-bore pipette. Copepods were identified to the species level and separated into females, males and juveniles (copepodites). All other taxa were identified at the species level when possible, or at higher taxonomic levels. Taxonomic identification was done according to the most relevant and updated taxonomic literature. Total mesozooplankton abundance was computed as sum of all specific abundances determined as explained above.