11 resultados para STAR-FORMATION HISTORY
em Publishing Network for Geoscientific
Resumo:
The continental margin off the La Plata Estuary (SE South America) is characterized by high fluvial sediment supply and strong ocean currents. High-resolution sediment-acoustic data combined with sedimentary facies analysis, AMS-14C ages, and neodymium isotopic data allowed us to reconstruct late Quaternary sedimentary dynamics in relation to the two major sediment sources, the La Plata Estuary and the Argentine margin. Sediments from these two provinces show completely different dispersal patterns. We show that the northward-trending La Plata paleo-valley was the sole transit path for the huge volumes of fluvial material during lower sea levels. In contrast, material from the Argentine margin sector was transported northwards by the strong current system. Despite the large sediment volumes supplied by both sources, wide parts of the shelf were characterized by either persistent non-deposition or local short-term depocenter formation. The location and formation history of these depocenters were primarily controlled by the interplay of sea level with current strength and local morphology. The high sediment supply was of secondary importance to the stratigraphic construction, though locally resulting in high sedimentation rates. Thus, the shelf system off the La Plata Estuary can be considered as a hydrodynamic-controlled end-member.
Resumo:
Mineralogy and geochemistry of sulfide-bearing rocks and ores discovered within the Menez Gwen Hydrothermal Field are studied. Samples were taken during Cruise 49 of R/V Akademik Mstislav Keldysh of the p.p. Shirshov Institute of Oceanology. Mineral composition of rocks and ores were studied by traditional methods of optical microscopy, scanning electron microscopy (CAMSCAN), and microprobe analysis (EPMA SX-50). Contents of trace elements were determined by laser ablation inductively coupled plasma - mass spectrometry (LA-ICP-MS). Zn-Cu ore comprises zonal sulfide chimney intergrowths. Numerous Se-rich copper ore fragments occur in volcanomictic layered gritstones and/or barite slabs. Mineral composition, zonality and association of trace elements in ore are typical of black smokers formed at the basalt base near the Azores Triple Junction in the MAR. Obtained results make it possible to reconstruct formation history of the Menez Gwen Hydrothermal Field into the high-temperature (Cu-Se association in ore clasts), medium-temperature (Zn-Cu-As association in ore), and recent (Ba-SiO2 association) stages.
Resumo:
The Neogene and Quaternary sedimentary record of Leg 71 and previously drilled sequences from the Southern Ocean reveal evidence of a major late Miocene change of oceanic and glacial conditions in the southern high latitudes during paleomagnetic Chron 9. The characteristics of late Miocene sedimentation and in particular the study of erosional patterns and ice-rafted debris suggest the following conclusions. 1) In the late Miocene, the Polar Front first migrated to the northern latitudes of the Southern Ocean and surface water temperatures became similar to those of today. 2) Extensive ice shelves or ice tongues were not present along the Antarctic margin until late Chron 9 (about 9.0 Ma). 3) Before Chron 9, West Antarctica was occupied by an archipelago and the West Antarctic Sea. 4) Extensive ice shelves formed in the West Antarctic region, eventually coalescing and thickening to form the grounded West Antarctic ice sheet by Chron 9. 5) The newly formed West Antarctic ice sheet was probably unstable and frequently became an ungrounded ice shelf, thus accounting for the scarcity of late Miocene ice-rafted debris. 6) Extensive erosion or nondeposition of sediment was probably the result of increased Antarctic Bottom Water (AABW) formation in the West Antarctic region during the initial formation of extensive West Antarctic ice shelves and during periods when the West Antarctic ice sheet was ungrounded. 7) In the Southwest Atlantic, AABW velocity waned during the latest Miocene. During the late Gilbert Chron a major and permanent change occurred in the pattern of ice-rafting to the South Atlantic, and after 4.35 Ma the increased IRD accumulation rate and frequency of major episodes of IRD accumulation suggest increased stability of the West Antarctic ice sheet. In addition, radiolarian faunas of Hole 514 record at least eight migrations of the Polar Front to the north of the site during the past 4.07 m.y. An apparent increase in the frequency of Polar Front migrations occurred about 2.7-2.6 Ma, possibly in response to oceanic change induced by fluctuations in glacial conditions of the Northern Hemisphere.
Resumo:
Strata that record the evolutionary history of the North American continental margin in a region that serves as the basin margin interface between allochthonous sedimentation from the continent and pelagic sedimentation from the oceanic realm were recovered at Deep Sea Drilling Project Site 603, on the lower continental rise. The lowermost unit recovered at this site is composed of upper Berriasian-Aptian interbedded laminated limestone and bioturbated limestone with sandstone to claystone turbidites. This unit can be correlated with the Blake-Bahama Formation in the western North Atlantic. Studies of the laminated and bioturbated limestones were used to determine the depositional environment. Geochemical and petrographic studies suggest that the laminated limestones were deposited from the suspended particulate loads of the nepheloid layer associated with weak bottom-current activity as well as moderate to poorly oxygenated bottom-water conditions. Fragments of macrofossils are also found in the Blake-Bahama Formation drilled at Site 603. Twelve specimens and their host sediment were analyzed for their carbon and oxygen isotopic composition. The macrofossil samples chosen for analysis consist of nine samples of Inoceramus, two ammonite aptychi, and one belemnite sample. Depletion in 18O is observed in recrystallized specimens. The ammonite aptychi have been diagenetically altered and/or exhibit evidence of isotopic fractionation by the organism. Oxygen isotope paleotemperatures obtained from five well-preserved specimens - four of Inoceramus and one of a belemnite - suggest that bottom-water temperatures in the North Atlantic Basin during the Early Cretaceous were very warm, at least 11°C.
Resumo:
Sedimentary sections recovered from the Tonga platform and forearc during Ocean Drilling Program Leg 135 provide a record of the sedimentary evolution of the active margin of the Indo-Australian Plate from late Eocene time to the Present. Facies analyses of the sediments, coupled with interpretations of downhole Formation MicroScanner logs, allow the complete sedimentary and subsidence history of each site to be reconstructed. After taking into account the water depths in which the sediments were deposited and their subsequent compaction, the forearc region of the Tofua Arc (Site 841) can be seen to have experienced an initial period of tectonic subsidence dating from 35.5 Ma. Subsidence has probably been gradual since that time, with possible phases of accelerated subsidence, starting at 16.2 and 10.0 Ma. The Tonga Platform (Site 840) records only the last 7.0 Ma of arc evolution. However, the increased accuracy of paleowater depth determinations possible with shallow-water platform sediments allows the resolution of a distinct increase in subsidence rates at 5.30 Ma. Thus, sedimentology and subsidence analyses show the existence of at least two, and possibly four, separate subsidence events in the forearc region. Subsidence dating from 35.5 Ma is linked to rifting of the South Fiji Basin. Any subsidence dating from 16.2 Ma at Site 841 does not correlate with another known tectonic event and is perhaps linked to localized extensional faulting related to slab roll back during steady-state subduction. Subsidence from 10.0 Ma coincides with the breakup of the early Tertiary Vitiaz Arc because of the subduction polarity reversal in the New Hebrides and the subsequent readjustment of the plate boundary geometry. More recently, rapid subsidence and deposition of a upward-fining cycle from 5.30 Ma to the Present at Site 840 is thought to relate to rifting of the Lau Basin. Sedimentation is principally controlled by tectonic activity, with variations in eustatic sea level playing a significant, but subordinate role. Subduction of the Louisville Seamount Chain seems to have disrupted the forearc region locally, although it had only a modest effect on the subsidence history and sedimentation of the Tonga Platform as a whole.
Resumo:
We measured oxygen-isotope compositions of 16 siliceous rocks from Deep Sea Drilling Project Sites 463, 464, 465, and 466 (Leg 62). Samples are from deposits that range in age from about 40 to 103 m.y. and that occur at sub-bottom depths of 9 to 461 meters. Mean d18O values range from 28.4 to 36.8 per mil and 36.0 ± 0.3 per mil for quartz-rich and opal-CTrich rocks, respectively. d18O values in chert decrease with increasing sub-bottom depth; the slope of the d18O/depth curve is less steep for Site 464 than for the other sites which indicates that chert at Site 464 formed at higher temperatures than chert at Sites 463, 465, and 466. Temperatures of formation of cherts were 7 to 42°C, using the silica-water fractionation factor of Knauth and Epstein (1976), or 19 to 56°C, using the equation of Clayton et al. (1972). Temperatures in the sediment where the cherts now occur are lower than their isotopically determined temperatures of formation, which means that the cherts record an earlier history when temperatures in the sediment section were greater. Estimated sediment temperatures when the cherts formed are comparable to, but generally slightly lower than, those calculated from Knauth and Epstein's equation. The isotopic composition of cherts is more closely related to environment of formation (diagenetic environment) or paleogeothermal gradients, than to paleoclimates (bottom-water temperatures). Opal-CT-rich rocks may better record paleo-bottom-water temperature. In Leg 62 cherts, better crystallinity of quartz corresponds to lower d18O values; this implies progressively higher temperatures of equilibration between quartz and water during maturation of quartz. The interrelationship of d18O and crystallinity is noted also in continental-margin deposits such as the Monterey Formation - but for higher temperatures. The apparent temperature difference between open-ocean and continental-margin deposits can be explained by the dominant control of temperature on silica transformation in the rapidly deposited continental-margin deposits, whereas time, as well as temperature, has a strong influence on the transformations in open-ocean deposits. Comparisons between the chemistry and d18O values of cherts reveal two apparent trends: both boron and SiO2 increase as d18O increases. However, the correspondence between SiO2 and d18O is only apparent, because the two cherts lowest in SiO2 are also the most deeply buried, so the trend actually reflects depth of burial. The correspondence between boron and d18O supports the conclusion that boron is incorporated in the quartz crystal structure during precipitation
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Ocean acidification (OA) is believed to be a major threat for near-future marine ecosystems, and that the most sensitive organisms will be calcifying organisms and the free-living larval stages produced by most benthic marine species. In this respect, echinoderms are one of the taxa most at risk. Earlier research on the impact of near-future OA on echinoderm larval stages showed negative effects, such as a decreased growth rate, increased mortality, and developmental abnormalities. However, all the long-term studies were performed on planktotrophic larvae while alternative life-history strategies, such as nonfeeding lecithotrophy, were largely ignored. Here, we show that lecithotrophic echinoderm larvae and juveniles are positively impacted by ocean acidification. When cultured at low pH, larvae and juveniles of the sea star Crossaster papposus grow faster with no visible affects on survival or skeletogenesis. This suggests that in future oceans, lecithotrophic species may be better adapted to deal with the threat of OA compared with planktotrophic ones with potentially important consequences at the ecosystem level. For example, an increase in populations of the top predator C. papposus will likely have huge consequences for community structure. Our results also highlight the importance of taking varying life-history strategies into account when assessing the impacts of climate change, an approach that also provides insight into understanding the evolution of life-history strategies.