160 resultados para Protected Designation of Origin (PDO)
em Publishing Network for Geoscientific
Resumo:
As part of an ongoing program of organic geochemical studies of sediments recovered by the Deep Sea Drilling Project, we have analyzed the types, amounts, and thermal alteration indices of organic matter collected from the Pacific continental margin of southern Mexico on Leg 66. The samples were pieces of core frozen aboard ship. Some of them were analyzed by pyrolysis, heavy C15+ hydrocarbons, and nonhydrocarbons to help determine their origin and hydrocarbon potential. Our main objectives were to find out how much organic matter was being deposited; to establish whether it derived from marine or terrestrial sources; to determine the controls of deposition of organic matter; to estimate the hydrocarbon potential of the drilled section; and to compare and contrast organic sedimentation here with that on other margins.
Resumo:
Basalt recovered beneath Jurassic sediments in the western Atlantic at Deep Sea Drilling Project sites 100 and 105 of leg 11 has petrographic features characteristic of water-quenched basalt extruded along modern ocean ridges. Site 100 basalt appears to represent two or three massive cooling units, and an extrusive emplacement is probable. Site 105 basalt is less altered and appears to be a compositionally homogeneous pillow lava sequence related to a single eruptive episode. Although the leg 11 basalts are much more closely related in time to the Triassic lavas and intrusives of eastern continental North America, their geochemical features are closely comparable to those of modern Mid-Atlantic Ridge basalts unrelated to postulated "mantle plume" activity. Projection of leg 11 sites back along accepted spreading "flow lines" to their presumed points of origin shows that these origins are also outside the influence of modern" plume" activity. Thus, these oldest Atlantic seafloor basalts provide no information on the time of initiation of these "plumes". The Triassic continental diabases show north to south compositional variations in Rb, Ba, La, and Sr which lie within the range of " plume "-related basalt on the Mid-Atlantic Ridge (20° - 40° N) This suggests that these diabases had mantle sources similar in composition to those beneath the present Mid-Atlantic Ridge. "Plumes" related to deep mantle sources may have contributed to the LIL-element enrichment in the Triassic diabase and may also have been instrumental in initiating the rifting of the North Atlantic. Systematically high values for K and Sr87/Sr86 in the Triassic diabases may reflect superimposed effects of crustal contamination in the Triassic magmas.
Resumo:
The quantity and quality of organic carbon of Eocene to Holocene sediments from ODP Sites 645, 646, and 647 were investigated to reconstruct depositional environments. Results were based on organic-carbon and nitrogen determinations, Rock-Eval pyrolysis, and kerogen microscopy. The sediments at Site 645 in Baffin Bay are characterized by relatively high organic-carbon values, most of which range from 0.5% to almost 3%, with maximum values in the middle Miocene. Distinct maxima of organic-carbon accumulation rates occur between 18 and 12.5 Ma and between 3.4 and 0 Ma. At Sites 646 and 647 in the Labrador Sea, organic-carbon contents vary between 0.1% and 0.75%. Cyclic 'Milankovitch-type' changes in organic-carbon deposition imply climate-controlled mechanisms that cause these fluctuations. The composition of organic matter at Site 645 is dominated by terrigenous components throughout the entire sediment sequence. An increased content of marine organic carbon was recorded only in the late-middle Miocene. At Sites 646 and 647, the origin of the organic matter most probably is marine. Oceanic paleoproductivity values were estimated, based on the amount of marine organic carbon. During most of the Neogene time interval at Site 645, productivity was low, i.e., similar or less than that measured in Baffin Bay today. Higher values of up to 150 (200) gC/m**2/y may have occurred only in the Miocene. At Sites 646 and 647, mean paleoproductivity values vary between 90 and 170 gC/m**2/y; i.e., these are also similar to those measured in the Labrador Sea today. Lower values of 40 to 70 gC/m**2/y were estimated for the early Eocene and (middle) Miocene.
Resumo:
Molecular and isotope compositions of headspace and total (free + sorbed) hydrocarbon gases from drilled cores of the three ODP Leg 104 Sites 642, 643, and 644 of the Voring Plateau are used to characterize the origin and distribution of these gases in Holocene to Eocene sediments. Only minor amounts of methane were found in the headspace (0.1 to < 0.001 vol%). Although methane through propane are present in all of the total gas samples, different origins account for the concentration and composition variations found. Site 643 at the foot of the outer Voring Plateau represents a geological setting with poor hydrocarbon generating potential, (sediments with low TOC and maturity overlying oceanic basement). Correspondingly, the total gas concentrations are low, typical for background gases (yield C1 - 4 = 31 to 232 ppb, C1/C2+ = 0.6 to 4; delta13C(CH4) -22 per mil to -42 per mil) probably of a diagenetic origin. Holocene to Eocene sediments, which overlie volcanic units, were drilled on the outer Vdring Plateau, at Holes 642B and D. Similar to Site 643, these sediments possess a poor hydrocarbon generating potential. The total gas character (yield C1 - 4 = 20 to 410 ppb; C1/C2+ = 1.7 to 13.3; delta13C(CH4) ca. -23 per mil to -40 per mil) again indicates a diagenetic origin, perhaps with the addition of some biogenic gas. The higher geothermal gradient and the underlying volcanics do not appear to have any influence on the gas geochemistry. The free gas (Vacutainer TM) in the sediments at Site 644 are dominated by biogenic gas (C1/C2+ > 104; delta13C(CH4) -77 per mil). Indications, in the total gas, of hydrocarbons with a thermogenic signature (yield C1 - 4 = 121 to 769 ppb, C1/ C2+ = 3 to 8; delta13C(CH4) = -39 per mil to -71 per mil), could not be unequivocally confirmed as such. Alternatively, these gases may represent mixtures of diagenetic and biogenic gases.
Resumo:
Thin but discrete pelagic limestone beds intercalated among the black mudstones near the top of the extensive Mesozoic black shale sequence of the Falkland Plateau are reminiscent of similar occurrences in the central and North Atlantic and may be cyclic in nature. They have been studied via carbonate, organic carbon, stable isotope, nannofloral, and ultrastructural analysis in an attempt to determine their mode of origin. Nannofossil diversity and preservation suggest that selective dissolution or diagenesis did not produce the interbedded coccolith-rich and coccolith-poor layers, nor did blooms of opportunistic species play a role. Stable isotope measurements of carbonate do not adequately constrain the origin of the cyclicity; however, the d13C data suggest that the more nannofossil-rich intervals may be due to higher nutrient supply and overturn of deeper waters at the site rather than influxes of well-oxygenated waters into an otherwise anoxic environment. Such an explanation is in accord with the nannofloral evidence
Resumo:
Selected core samples from the California Continental Borderland (Sites 467-469) were analyzed to evaluate the nature and composition of the lipids and kerogens in terms of their genetic origin and geological maturity. The lipids were of a multiple origin. On the basis of the homolog distributions of the n-alkanes and n-fatty acids, with the shape and magnitude of the unresolved branched and cyclic hydrocarbons, and the structural and stereochemical compositions of the molecular markers, these lipids were derived from primary autochthonous marine (microbial), from allochthonous terrigenous (higher plant wax), and from recycled (geologically mature organic matter) sources. The kerogens were composed of principally marine microbial detritus with a minor input of allochthonous terrestrial material. For the most part, the samples had undergone a thermal maturation according to a normal geothermal gradient, except in the proximity of intrusives. Such additional thermal stress was evident for the samples from Site 469 and to some extent for Site 467 at about a sub-bottom depth of 700 to 800 meters.
Resumo:
Sediments from Holes 994C, 995A, 997A, and 997B have been investigated for "combined" gases (adsorbed gas and that portion of free gas that has not escaped from the pore volume during core recovery and sample collection and storage), solvent-extractable organic compounds, and microscopically identifiable organic matter. The soluble materials mainly consist of polar compounds. The saturated hydrocarbons are dominated by n-alkanes with a pronounced odd-even predominance pattern that is derived from higher plant remains. Unsaturated triterpenoids and 17ß, 21ß-pentacyclic triterpenoids are characteristic for a low maturity stage of the organic matter. The low maturity is confirmed by vitrinite reflectance values of 0.3%. The proportion of terrestrial remains (vitrinite) increases with sub-bottom depth. Within the liptinite fraction, marine algae plays a major role in the sections below 180 mbsf, whereas above this depth sporinites and pollen from conifers are dominant. These facies changes are confirmed by the downhole variations of isoprenoid and triterpenoid ratios in the soluble organic matter. The combined gases contain methane, ethane, and propane, which is a mixture of microbial methane and thermal hydrocarbon gases. The variations in the gas ratios C1/(C2+C3) reflect the depth range of the hydrate stability zone. The carbon isotopic contents of ethane and propane indicate an origin from marine organic matter that is in the maturity stage of the oil window.
Resumo:
We have studied the magnetic properties of 22 samples from DSDP Leg 83 to determine the origin of remanence and its relationship to such problems as the tectonic and chemical evolution of the section, the depth of the magnetized layer, and the applicability of magnetic properties of ophiolites to the marine crust. The magnitude of natural remanence has fairly typical values in the uppermost part of the section, falls two to three orders of magnitude in the transition zone, and returns to values slightly less than the upper part in the dike complex. This behavior reflects, for the most part, variations in the amount of magnetic minerals present. Directional behavior is highly variable throughout the section and often shows complexity even on the level of a single sample. Curie temperature measurements and preliminary opaque petrography indicate that the remanence is chemical in origin and probably involves a resetting of the original thermal remanent magnetization (TRM) direction. Selective destructive demagnetization of four breccia samples shows that the remanence of the clasts was acquired prior to consolidation and did not change significantly thereafter. There are also indications that some of the remanence may be carried by secondary magnetic phases. A comparison of these samples with comparable ophiolite rocks is equivocal, with similarities in remanence characteristics but differences in magnetic mineralogy. As for magnetic anomalies, the transition zone is too weakly magnetized to contribute significantly. The available data on the dike complex are inconclusive and their contribution is still open to debate.
Resumo:
Microthermometric and isotopic analyses of fluid inclusions in primitive olivine gabbros, oxide gabbros, and evolved granitic material recovered from Ocean Drilling Program Hole 735B at the Southwest Indian Ridge provide new insights into the evolution of C-O-H-NaCl fluids in the plutonic foundation of the oceanic crust. The variably altered and deformed plutonic rocks span a crustal section of over 1500 m and record a remarkably complex magma-hydrothermal history. Magmatic fluids within this suite followed two chemically distinct paths during cooling through the subsolidus regime: the first path included formation of CO2+CH4+H2O+C fluids with up to 43 mole% CH4; the second path produced hypersaline brines that contain up to 50% NaCl equivalent salinities. Subsequent to devolatilization, respeciation of magmatic CO2, attendant graphite precipitation, and cooling from 800°C to 500°C promoted formation of CH4-enriched fluids. These fluids are characterized by average d13C(CH4) values of -27.1+/-4.3 per mil (N=45) with associated d13C(CO2) compositions ranging from -24.9 per mil to -1.9 per mil (N=39), and average dD values of exsolved vapor of -41+/-12 per mil (N=23). In pods, veins, and lenses of highly fractionated residual material, hypersaline brines formed during condensation and by direct exsolution in the absence of a conjugate vapor phase. Entrapped CO2+CH4+H2O-rich fluids within many oxide-bearing rocks and felsic zones are significantly depleted in 13C (with d13C(CO2) values down to about -25 per mil) and contain CO2 concentrations higher than those predicted by equilibrium devolatilization models. We hypothesize that lower effective pressures in high-temperature shear zones promoted infiltration of highly fractionated melts and compositionally evolved volatiles into focused zones of deformation, significantly weakening the rock strength. In felsic-rich zones, volatile build-up may have driven hydraulic fracturing of gabbroic wall rocks resulting in the formation of magmatic breccias. Comparison of isotopic compositions of fluids in plutonic rocks from 735B, the MARK area of the Mid-Atlantic Ridge, and the Mid-Cayman Rise indicate (1) that the carbon isotope composition of the lower oceanic crust may be far more heterogeneous than previously believed and (2) that carbon-bearing species in the oceanic crust and their distribution at depth are highly variable.
Resumo:
Sediment cores recovered from three holes drilled during Ocean Drilling Program Leg 136 include volcaniclastics probably derived from the Hawaiian islands. The volcaniclastics shallower than 10 meters below seafloor are fresh and are composed of basaltic glass (sideromelane), basaltic fragments (mainly tachylite), plagioclase, olivine, pyroxene, and opaque minerals. Most of these glasses are probably products of hydrovolcanism. Visibly, some of these volcaniclastics are recognized as bedded ash layers having thicknesses that range from 5 to 10 cm. However, many volcaniclastics are disrupted by bioturbation to some degree, and are sometimes totally mixed with ambient brown clays. No visible correlative ash layer among these holes was found. It seems that many ash layers thinner than the bedded layers were disrupted by bioturbation because of the low sedimentation rate of volcaniclastics. The volcaniclastics were probably transported one of two ways: through air fall and pelagic settling or through turbidity-current transport. Other archipelagic apron volcaniclastic sediments of volcanic seamounts suggest that turbidite transport is the favored explanation of origin.
Resumo:
The thick oceanic crust of the Caribbean plate appears to be the tectonized remnant of an eastern Pacific oceanic plateau that has been inserted between North and South America. The emplacement of the plateau into its present position has resulted in the obduction and exposure of its margins, providing an opportunity to study the age relations, internal structure and compositional features of the plateau. We present the results of 40Ar-39Ar radiometric dating, major-, trace-element, and isotopic compositions of basalts from some of the exposed sections as well as drill core basalt samples from Leg 15 of the Deep Sea Drilling Project. Five widely spaced, margin sections yielded ages ranging from 91 to 88 Ma. Less well-constrained radiometric ages from the drill cores, combined with the biostratigraphic age of surrounding sediments indicate a minimum crystallization age of ~90 Ma in the Venezuelan Basin. The synchroneity of ages across the region is consistent with a flood basalt origin for the bulk of the Caribbean plateau i.e., large volume, rapidly erupted, regionally extensive volcanism.. The ages and compositions are also consistent with plate reconstructions that place the Caribbean plateau in the vicinity of the Galápagos hotspot at its inception. The trace-element and isotopic compositions of the ~90 Ma rocks indicate a depleted mantle and an enriched, plume-like mantle were involved in melting to varying degrees across the plateau. Within the same region, a volumetrically secondary, but widespread magmatic event occurred at 76 Ma, as is evident in Curacao, western Colombia, Haiti, and at DSDP Site 152/ODP Site 1001 near the Hess Escarpment. Limited trace-element data indicate that this phase of magmatism was generally more depleted than the first. We speculate that magmatism may have resulted from upwelling of mantle, still hot from the 90 Ma event, during lithospheric extension attending gravitational collapse of the plateau, andror tectonic emplacement of the plateau between North and South America. Still younger volcanics are found in the Dominican Republic (69 Ma) and the Quepos Peninsula of Costa Rica (63 Ma). The latter occurrence conceivably formed over the Galápagos hotspot and subsequently accreted to the western edge of the plateau during subduction of the Farallon plate.
Resumo:
A series of upper Pliocene to Pleistocene sediment samples from DSDP Sites 582 and 583 (Nankai Trough, active margin off Japan) were investigated by organic geochemical methods including organic carbon determination, Rock- Eval pyrolysis, gas chromatography of extractable hydrocarbons, and kerogen microscopy. The organic carbon content is fairly uniform and moderately low (0.35 to 0.77%) at both sites, although accompanied by high sedimentation rates. The low organic matter concentrations are the result of the combined effect of several factors: low bioproductivity, oxic depositional environment, and dilution with lithogenic material. Organic petrography revealed a mixture of three maceral types: (1) fresh, green fluorescent alginites of aquatic origin probably transported by turbidites from the shelf edge, (2) gelified huminites and paniculate liptinites derived from the erosion of unconsolidated peat, and (3) highly reflecting inertinites derived from continental erosion. By a combination of organic petrography and Rock-Eval pyrolysis results, the organic matter is characterized as mainly type III kerogen with a slight tendency to a mixed type II-III. During Rock-Eval pyrolysis, a mineral matrix effect on the generated hydrocarbons was observed. The organic matter in all sediments has a low level of maturity (below 0.45% Rm) and has not yet reached the onset of thermal hydrocarbon generation according to several geochemical maturation parameters. This low maturity is in contrast to anomalously high extract yields at both sites and large hydrocarbon proportions in the extracts at Site 583. This contrast may be due to early generation of polar compounds and perhaps redistribution of hydrocarbons caused by subduction tectonics. Carbon isotope data of the interstitial hydrocarbon gases indicate their origin from bacterial degradation of organic matter, although only very few bacterially degraded maceral components were detected.
Resumo:
Selected basalts from a suite of dredged and drilled samples (IPOD sites 525, 527, 528 and 530) from the Walvis Ridge have been analysed to determine their rare earth element (REE) contents in order to investigate the origin and evolution of this major structural feature in the South Atlantic Ocean. All of the samples show a high degree of light rare earth element (LREE) enrichment, quite unlike the flat or depleted patterns normally observed for normal mid-ocean ridge basalts (MORBs). Basalts from Sites 527, 528 and 530 show REE patterns characterised by an arcuate shape and relatively low (Ce/Yb)N ratios (1.46-5.22), and the ratios show a positive linear relationship to Nb content. A different trend is exhibited by the dredged basalts and the basalts from Site 525, and their REE patterns have a fairly constant slope, and higher (Ce/Yb)N ratios (4.31-8.50). These differences are further reflected in the ratios of incompatible trace elements, which also indicate considerable variations within the groups. Mixing hyperbolae for these ratios suggest that simple magma mixing between a 'hot spot' type of magma, similar to present-day volcanics of Tristan da Cunha, and a depleted source, possibly similar to that for magmas being erupted at the Mid-Atlantic Ridge, was an important process in the origin of parts of the Walvis Ridge, as exemplified by Sites 527, 528 and 530. Site 525 and dredged basalts cannot be explained by this mixing process, and their incompatible element ratios suggest either a mantle source of a different composition or some complexity to the mixing process. In addition, the occurrence of different types of basalt at the same location suggests there is vertical zonation within the volcanic pile, with the later erupted basalts becoming more alkaline arid more enriched in incompatible elements. The model proposed for the origin and evolution of the Walvis Ridge involves an initial stage of eruption in which the magma was essentially a mixture of enriched and depleted end-member sources, with the N-MORB component being small. The dredged basalts and Site 525, which represent either later-stage eruptives or those close to the hot spot plume, probably result from mixing of the enriched mantle source with variable amounts and variable low degrees of partial melting of the depleted mantle source. As the volcano leaves the hot spot, these late-stage eruptives continue for some time. The change from tholeiitic to alkalic volcanism is probably related either to evolution in the plumbing system and magma chamber of the individual volcano, or to changes in the depth of origin of the enriched mantle source melt, similar to processes in Hawaiian volcanoes.
Resumo:
Mud volcanism on the Mediterranean Ridge is caused by extrusion of overpressured sediments, with consequent formation of spectacular dome-shaped features composed of mud breccias at the seafloor. The organic material in the mud breccia of the Napoli mud volcano is a mixture of different facies, stratigraphic origin and thermal maturities. One portion is synsedimentary organic material with only minor diagenetic alterations and represents sedimenting material that was embedded into the mud volcano during its extrusion. The mud breccia also contains thermally mature organic material of mainly terrestrial provenance with algae of fresh- and brackish-water origin. Vitrinite reflectance data of this maturity generation range from 0.65 to 0.90% R(oil) and thus characterize thermally mature source rocks, a rank which is corroborated by fluorescence and molecular characteristics. The predominance of vitrinite in the maceral assemblages and the occurrence of biomarkers of terrigenous origin suggest that the major part of the mud matrix derives from a lacustrine or riverine sedimentary unit in the subsurface, possibly from the Messinian stage. A third generation of organic material includes inertinites and vitrinites of high reflectance, which represent recycled organic matter present in any marine sediment. By use of the Lopatin method for modelling the thermal maturation of hydrocarbon source rocks from the vitrinite reflectance data, we calculated that the depth of mobilization ranges from 4900 m to 7500 m, depending upon the temperature gradient used.
Resumo:
Sand detrital modes of Albian-Eocene clastic gravity-flow deposits cored and recovered at Ocean Drilling Program Site 1276 reflect the postrift geologic evolution of the Newfoundland passive continental margin. Cretaceous sandstone compositions (average: Q57F23L20; Ls%Lsc = 35; total%bioclasts = 3) are consistent with a source on Grand Banks such as Avalon Uplift. Their relatively low potassium feldspar (Qm71K8P21) contents distinguish them from Iberian sandstones and appear to preclude an easterly source during the early history of the ocean basin. Isolated volcaniclastic input near the Paleocene/Eocene boundary (~60 Ma) at Site 1276 is also present in Iberian samples of this age, suggesting that magmatism was widespread across the North Atlantic during this time frame; the source(s) of this volcanic debris remains equivocal. In the Eocene, the development of carbonate bank facies on the shelf marks a profound compositional change to calcareous grainstones (average: Q27F11L62; Ls%Lsc = 82; total%bioclasts = 55) in basinal gravity-flow deposits at Site 1276. This calcareous petrofacies is present on the Iberian margin and in the Pyrenees, suggesting that it was a regional event. The production and downslope redistribution of carbonate debris, including bioclastic and lithic fragments, was likely eustatically controlled. The Newfoundland (Site 1276 and Jeanne d'Arc Basin) sandstones are mainly quartzolithic. Their composition and the contrast in composition between them and more quartzofeldspathic sandstones from the Iberian margin are likely a product of rifting along a Paleozoic suture zone separating distinct basement terranes. This prerift geologic setting contrasts with that of rifts developed within other cratonic settings with variable amounts of synrift volcanism. When synthesized, the spectrum of synrift and postrift sand compositions produces a general model of passive margin (rift-to-drift) sandstone provenance.