371 resultados para Passive Margin

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemoherm carbonates, as well as numerous other types of methane seep carbonates, were discovered in 2004 along the passive margin of the northern South China Sea. Lithologically, the carbonates are micritic containing peloids, clasts and clam fragments. Some are highly brecciated with aragonite layers of varying thicknesses lining fractures and voids. Dissolution and replacement is common. Mineralogically, the carbonates are dominated by high magnesium calcites (HMC) and aragonite. Some HMCs with MgCO3 contents of between 30-38 mol%-extreme-HMC, occur in association with minor amounts of dolomite. All of the carbonates are strongly depleted in d13C, with a range from -35.7 to -57.5 per mil PDB and enriched in d18O (+ 4.0 to + 5.3 per mil PDB). Abundant microbial rods and filaments were recognized within the carbonate matrix as well as aragonite cements, likely fossils of chemosynthetic microbes involved in carbonate formation. The microbial structures are intimately associated with mineral grains. Some carbonate mineral grains resemble microbes. The isotope characteristics, the fabrics, the microbial structure, and the mineralogies are diagnostic of carbonates derived from anaerobic oxidation of methane mediated by microbes. From the succession of HMCs, extreme-HMC, and dolomite in layered tubular carbonates, combined with the presence of microbial structure and diagenetic fabric, we suggest that extreme-HMC may eventually transform into dolomites. Our results add to the worldwide record of seep carbonates and establish for the first time the exact locations and seafloor morphology where such carbonates formed in the South China Sea. Characteristics of the complex fabric demonstrate how seep carbonates may be used as archives recording multiple fluid regimes, dissolution, and early transformation events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seawater 187Os/188Os ratios for the Middle Miocene were reconstructed by measuring the 187Os/188Os ratios of metalliferous carbonates from the Pacific (DSDP 598) and Atlantic (DSDP 521) oceans. Atlantic and Pacific 187Os/188Os measurements are nearly indistinguishable and are consistent with previously published Os isotope records from Pacific cores. The Atlantic data reported here provide the first direct evidence that the long-term sedimentary 187Os/188Os record reflects whole-ocean changes in the Os isotopic composition of seawater. The Pacific and the Atlantic Os measurements confirm a long-term 0.01/Myr increase in marine 187Os/188Os ratios that began no later than 16 Ma. The beginning of the Os isotopic increase coincided with a decrease in the rate of increase of marine 87Sr/86Sr ratios at 16 Ma. A large increase of 1? in benthic foraminiferal delta18O values, interpreted to reflect global cooling and ice sheet growth, began approximately 1 million years later at 14.8 Ma, and the long-term shift toward lower bulk carbonate delta13C values began more than 2 Myr later around 13.6 Ma. The post-16 Ma increase in marine 187Os/188Os ratios was most likely forced by weathering of radiogenic materials, either old sediments or sialic crust with a sedimentary protolith. We consider two possible Miocene-specific geologic events that can account for both this increase in marine 187Os/188Os ratios and also nearly constant 87Sr/86Sr ratios: (1) the first glacial erosion of sediment-covered cratons in the Northern Hemisphere; (2) the exhumation of the Australian passive margin-New Guinea arc system. The latter event offers a mechanism, via enhanced availability of soluble Ca and Mg silicates in the arc terrane, for the maintenance of assumed low CO2 levels after 15 Ma. The temporal resolution (three samples/Myr) of the 187Os/188Os record from Site 598, for which a stable isotope stratigraphy was also constructed, is significantly higher than that of previously published records. These high resolution data suggest oscillations with amplitudes of 0.01 to 0.02 and periods of around 1 Myr. Although variations in the 187Os/188Os record of this magnitude can be easily resolved analytically, this higher frequency signal must be verified at other sites before it can be safely interpreted as global in extent. However, the short-term 187Os/188Os variations may correlate inversely with short-term benthic foraminiferal delta18O and bulk carbonate delta13C variations that reflect glacioeustatic events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Leg 80 basalts drilled on the Porcupine Abyssal Plain 10 km southwest of Goban Spur (Hole 550B) and on the western edge of Goban Spur (Hole 551), respectively, are typical light-rare-earth-element- (LREE-) depleted oceanic tholeiites. The basalts from the two holes are almost identical; most of their primary geochemical and mineralogical characteristics have been preserved, but they have undergone some low-temperature alteration by seawater, such as enrichment in K, Rb, and Cs and development of secondary potassic minerals of the "brownstone facies." K/Ar dating fail to give realistic emplacement ages; the apparent ages obtained become younger with alteration (causing an increase in K2O). Hole 551 basalts are clearly different from the continental tholeiites emplaced on the margins of oceanizing domains during the prerift and synrift stages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The passive continental margin south-west of Rockall Plateau is characterized by a thick sequence of oceanward-dipping seismic reflectors. During Leg 81 of the Deep Sea Drilling Project, these reflectors were sampled at Site 553 and proved to consist almost exclusively of basalt. Here we present lead isotope data which indicate that these basalts may have been contaminated by ancient uranium-depleted continental crust, or alternatively, derived from a sub-continental lithospheric mantle source. In either case, the implications are that the basalts of the south-west Rockall Plateau formed by eruption through and onto continental basement, not by 'subaerial seafloor spreading'. This conclusion is in accord with gravity models of the area, which predict stretched continental crust beneath the dipping reflector sequence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyzed samples from ODP Holes 652A and 654A (Leg 107, Tyrrhenian Sea) for the amount, type, and thermal maturity of organic matter. The sediments encompass clastic and biogenic lithologies, which were deposited on the passive margin east of Sardinia since the late Miocene to the Pleistocene. Marine, hypersaline/evaporitic, lacustrine/riverine, and finally hemipelagic marine conditions with occasional anoxic(?) interludes gave rise to very diverse sedimentary facies. The majority of samples is lean in organic matter (<0.2% TOC). Notable exceptions are Tortonian sediments (TOC average 0.3%), Messinian oil shales from Core 107-652A-64R (up to 11% TOC), Messinian lacustrine/fluvial sediments from Hole 652A (TOC average 0.42%,), and Pleistocene sapropel samples (>2% TOC). The Messinian oil shale in Hole 652A appears to be the only mature hydrocarbon source rock. In general, Pliocene sediments are the leanest and least mature samples. Pleistocene and Pliocene samples derive organic matter from a marine source. In spite of obvious facies differences in the Messinian between the two sites, pyrolysis results are not conclusive in separating hypersaline facies of Site 654 from the fresh water facies of Site 652, because both appear to have received terrestrial organic tissue as the main component of TOC. It is apparent from the distribution of maximum pyrolysis temperatures that heat flow must have been considerably higher at Site 652 on the lower margin in the Messinian. Molecular maturity indices in lipid extracts substantiate the finding that the organic matter in Tortonian and Messinian samples from Hole 654A is immature, while thermal maturation is more advanced in coeval samples from Hole 652A. Analyses of lipid biomarkers showed that original odd-even predominance was preserved in alkanes and alkylcyclohexanes from Messinian samples in Hole 654A, while thermal maturation had removed any odd-even predominance in Hole 652A. Isomerization data of hopanes and steranes support these differences in thermal history for the two sites. Hopanoid distribution further suggests that petroleum impregnation from a deeper, more mature source resulted in the co-occurrence of immature and mature groups of pentacyclic biomarkers. Even though the presence of 4-methylsteranes may imply that dinoflagellates were a major source for organic matter in the oil shale interval of Hole 652, we did not find intact dinoflagellates or related nonskeletal algae during microscopic investigation of the organic matter in the fine laminations. Morphologically, the laminations resemble bacterial mats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We provide new insights into the geochemistry of serpentinites from mid-ocean ridges (Mid-Atlantic Ridge and Hess Deep), passive margins (Iberia Abyssal Plain and Newfoundland) and fore-arcs (Mariana and Guatemala) based on bulk-rock and in situ mineral major and trace element compositional data collected on drill cores from the Deep Sea Drilling Project and Ocean Drilling Program. These data are important for constraining the serpentinite-hosted trace element inventory of subduction zones. Bulk serpentinites show up to several orders of magnitude enrichments in Cl, B, Sr, U, Sb, Pb, Rb, Cs and Li relative to elements of similar compatibility during mantle melting, which correspond to the highest primitive mantle-normalized B/Nb, B/Th, U/Th, Sb/Ce, Sr/Nd and Li/Y among subducted lithologies of the oceanic lithosphere (serpentinites, sediments and altered igneous oceanic crust). Among the elements showing relative enrichment, Cl and B are by far the most abundant with bulk concentrations mostly above 1000 µg/g and 30 µg/g, respectively. All other trace elements showing relative enrichments are generally present in low concentrations (µg/g level), except Sr in carbonate-bearing serpentinites (thousands of µg/g). In situ data indicate that concentrations of Cl, B, Sr, U, Sb, Rb and Cs are, and that of Li can be, increased by serpentinization. These elements are largely hosted in serpentine (lizardite and chrysotile, but not antigorite). Aragonite precipitation leads to significant enrichments in Sr, U and B, whereas calcite is important only as an Sr host. Commonly observed brucite is trace element-poor. The overall enrichment patterns are comparable among serpentinites from mid-ocean ridges, passive margins and fore-arcs, whereas the extents of enrichments are often specific to the geodynamic setting. Variability in relative trace element enrichments within a specific setting (and locality) can be several orders of magnitude. Mid-ocean ridge serpentinites often show pronounced bulk-rock U enrichment in addition to ubiquitous Cl, B and Sr enrichment. They also exhibit positive Eu anomalies on chondrite-normalized rare earth element plots. Passive margin serpentinites tend to have higher overall incompatible trace element contents than mid-ocean ridge and fore-arc serpentinites and show the highest B enrichment among all the studied serpentinites. Fore-arc serpentinites are characterized by low overall trace element contents and show the lowest Cl, but the highest Rb, Cs and Sr enrichments. Based on our data, subducted dehydrating serpentinites are likely to release fluids with high B/Nb, B/Th, U/Th, Sb/Ce and Sr/Nd, rendering them one of the potential sources of some of the characteristic trace element fingerprints of arc magmas (e.g. high B/Nb, high Sr/Nd, high Sb/Ce). However, although serpentinites are a substantial part of global subduction zone chemical cycling, owing to their low overall trace element contents (except for B and Cl) their geochemical imprint on arc magma sources (apart from addition of H2O, B and Cl) can be masked considerably by the trace element signal from subducted crustal components.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied the diagenetic behavior of rare earth elements (REEs) in a highly productive passive margin setting of the Bering Sea Slope. Site U1345 was drilled during the Integrated Ocean Drilling Program Expedition 323 at a water depth of 1008 m currently in the center of an oxygen minimum zone. Pore water concentrations of fourteen REEs were determined down to ~ 140 meters below the seafloor (mbsf). The REE concentrations were higher in the pore water than the deep seawater, indicating that there was significant liberation from the sediments during diagenesis. There was a major peak at ~ 10 mbsf that was more pronounced for the heavy REE (HREE); this peak occurred below the sulfate-methane transition zone (6.3 mbsf) and coincided with high concentrations of dissolved iron and manganese. At ~ 2 mbsf, there was a minor peak in REE and Mn contents. Below ~ 40 mbsf, the REE concentration profiles remained constant. The Ce anomaly was insignificant and relatively constant (PAAS-normalized Ce/Ce = 1.1 ± 0.2) throughout the depth profile, showing that the Ce depleted in seawater was restored in the pore water. HREE-enrichment was observed over the entire 140 m except for the upper ~ 1 m, where a middle REE (MREE)-bulge was apparent. REE release in shallow depths (2-4 mbsf) is attributed to the release of light REEs (LREEs) and MREEs during the organoclastic reduction of Mn oxides in anoxic sediments. The high HREE concentrations observed at ~ 10 mbsf can be attributed to the reduction of Fe and Mn minerals tied to anaerobic oxidation of methane or, less significantly, to ferromagnesian silicate mineral weathering. The upward diffusion flux across the sediment-water interface was between 3 (for Tm) and 290 (for Ce) pmol/m**2/y.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rare earth element (REE), major, and trace element abundances and relative fractionations in forty nodular cherts sampled by the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) indicate that the REE composition of chert records the interplay between terrigenous sources and scavenging from the local seawater. Major and (non-REE) trace element ratios indicate that the aluminosilicate fraction within the chert is similar to NASC (North American Shale Composite), with average Pacific chert including ~7% NASC-like particles, Indian chert ~11% NASC, Atlantic chert ~17% NASC, and southern high latitude (SHL) chert 53% NASC. Using La as a proxy for sum REE, approximations of excessive La (the amount of La in excess of that supplied by the detrital aluminosilicate fraction) indicate that Pacific chert contains the greatest excessive La (85% of total La) and SHL chert the least (38% of total La). As shown by interelement associations, this excessive La is most likely an adsorbed component onto aluminosilicate and phosphatic phases. Accordingly, chert from the large Pacific Ocean, where deposition occurs relatively removed from significant terrigenous input, records a depositional REE signal dominated by adsorption of dissolved REEs from seawater. Pacific chert Ce/Ce* <<1 and normative La/Yb ~ 0.8-1, resulting from adsorption of local Ce-depleted seawater and preferential adsorption of LREEs from seawater (e.g., normative La/Yb ~0.4), which increases the normative La/Yb ratio recorded in chert. Chert from the Atlantic basin, a moderately sized ocean basin lined by passive margins and with more terrigenous input than the Pacific, records a mix of adsorptive and terrigenous REE signals, with moderately negative Ce anomalies and normative La/Yb ratios intermediate to those of the Pacific and those of terrigenous input. Chert from the SHL region is dominated by the large terrigenous input on the Antarctic passive margin, with inherited Ce/Ce* ~1 and inherited normative La/Yb values of ~1.2-1.4. Ce/Ce* does not vary with age, either throughout the entire data base or within a particular basin. Overall, Ce/Ce* does not correlate with P2O5 concentrations, even though phosphatic phases may be an important REE carrier.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sand detrital modes of Albian-Eocene clastic gravity-flow deposits cored and recovered at Ocean Drilling Program Site 1276 reflect the postrift geologic evolution of the Newfoundland passive continental margin. Cretaceous sandstone compositions (average: Q57F23L20; Ls%Lsc = 35; total%bioclasts = 3) are consistent with a source on Grand Banks such as Avalon Uplift. Their relatively low potassium feldspar (Qm71K8P21) contents distinguish them from Iberian sandstones and appear to preclude an easterly source during the early history of the ocean basin. Isolated volcaniclastic input near the Paleocene/Eocene boundary (~60 Ma) at Site 1276 is also present in Iberian samples of this age, suggesting that magmatism was widespread across the North Atlantic during this time frame; the source(s) of this volcanic debris remains equivocal. In the Eocene, the development of carbonate bank facies on the shelf marks a profound compositional change to calcareous grainstones (average: Q27F11L62; Ls%Lsc = 82; total%bioclasts = 55) in basinal gravity-flow deposits at Site 1276. This calcareous petrofacies is present on the Iberian margin and in the Pyrenees, suggesting that it was a regional event. The production and downslope redistribution of carbonate debris, including bioclastic and lithic fragments, was likely eustatically controlled. The Newfoundland (Site 1276 and Jeanne d'Arc Basin) sandstones are mainly quartzolithic. Their composition and the contrast in composition between them and more quartzofeldspathic sandstones from the Iberian margin are likely a product of rifting along a Paleozoic suture zone separating distinct basement terranes. This prerift geologic setting contrasts with that of rifts developed within other cratonic settings with variable amounts of synrift volcanism. When synthesized, the spectrum of synrift and postrift sand compositions produces a general model of passive margin (rift-to-drift) sandstone provenance.