12 resultados para Mass Mortality
em Publishing Network for Geoscientific
Resumo:
Background: Studies of oyster microbiomes have revealed that a limited number of microbes, including pathogens, can dominate microbial communities in host tissues such as gills and gut. Much of the bacterial diversity however remains underexplored and unexplained, although environmental conditions and host genetics have been implicated. We used 454 next generation 16S rRNA amplicon sequencing of individually tagged PCR reactions to explore the diversity of bacterial communities in gill tissue of the invasive Pacific oyster Crassostrea gigas stemming from genetically differentiated beds under ambient outdoor conditions and after a multifaceted disturbance treatment imposing stress on the host. Results: While the gill associated microbial communities in oysters were dominated by few abundant taxa (i.e. Sphingomonas, Mycoplasma) the distribution of rare bacterial groups correlated to relatedness between the hosts under ambient conditions. Exposing the host to disturbance broke apart this relationship by removing rare phylotypes thereby reducing overall microbial diversity. Shifts in the microbiome composition in response to stress did not result in a net increase in genera known to contain potentially pathogenic strains. Conclusion: The decrease in microbial diversity and the disassociation between population genetic structure of the hosts and their associated microbiome suggest that disturbance (i.e. stress) may play a significant role for the assembly of the natural microbiome. Such community shifts may in turn also feed back on the course of disease and the occurrence of mass mortality events in oyster populations.
Resumo:
The evolution of environmental changes during the last decades and the impact on the living biomass in the western part of Amvrakikos Gulf was investigated using abundances and species distributions of benthic foraminifera and lipid biomarker concentrations. These proxies indicated that the gulf has markedly changed due to eutrophication. Eutrophication has led to a higher productivity, a higher bacterial biomass, shifts towards opportunistic and tolerant benthic foraminifera species (e.g. Bulimina elongata, Nonionella turgida, Textularia agglutinans, Ammonia tepida) and a lower benthic species density. Close to the Preveza Strait (connection between the gulf and the Ionian Sea), the benthic assemblages were more diversified under more oxygenated conditions. Sea grass meadows largely contributed to the organic matter at this sampling site. The occurrence of isorenieratane, chlorobactane and lycopane supported by oxygen monitoring data indicated that anoxic (and partly euxinic) conditions prevailed seasonally throughout the western part of the gulf with more severe oxygen depletion towards the east. Increased surface water temperatures have led to a higher stratification, which reduced oxygen resupply to bottom waters. Altogether, these developments led to mass mortality events and ecosystem decline in Amvrakikos Gulf.
Resumo:
The surf clams Mesodesma mactroides Reeve, 1854 and Donax hanleyanus Philippi, 1847 are the two dominating species in macrobenthic communities of sandy beaches off northern Argentina, with the latter now surpassing M. mactroides populations in abundance and biomass. Before stock decimation caused by exploitation (during the 1940s and 1950s) and mass mortality events (1995, 1999 and 2007) M. mactroides was the prominent primary consumer in the intertidal ecosystem and an important economic resource in Argentina. Since D. hanleyanus was not commercially fished and not affected by mass mortality events, it took over as the dominant species, but did never reach the former abundance of M. mactroides. Currently abundance and biomass of both surf clams are a multiple smaller than those of forty years ago, indicating the conservation status of D. hanleyanus and M. mactroides as endangered. Therefore the aim of this study is to analyse the population dynamics (population structure, growth and reproductive biology) of D. hanleyanus and M. mactroides, and to compare the results with historical data in order to detect possible differences within surf clam populations forty years ago and at present.
Resumo:
Large-scale environmental patterns in the Humboldt Current System (HCS) show major changes during strong El Niño episodes, leading to the mass mortality of dominant species in coastal ecosystems. Here we explore how these changes affect the life-history traits of the surf clam Mesodesma donacium. Growth and mortality rates under normal temperature and salinity were compared to those under anomalous (El Niño) higher temperature and reduced salinity. Moreover, the reproductive spatial-temporal patterns along the distribution range were studied, and their relationship to large-scale environmental variability was assessed. M. donacium is highly sensitive to temperature changes, supporting the hypothesis of temperature as the key factor leading to mass mortality events of this clam in northern populations. In contrast, this species, particularly juveniles, was remarkably tolerant to low salinity, which may be related to submarine groundwater discharge in Hornitos, northern Chile. The enhanced osmotic tolerance by juveniles may represent an adaptation of early life stages allowing settlement in vacant areas at outlets of estuarine areas. The strong seasonality in freshwater input and in upwelling strength seems to be linked to the spatial and temporal patterns in the reproductive cycle. Owing to its origin and thermal sensitivity, the expansion and dominance of M. donacium from the Pliocene/Pleistocene transition until the present seem closely linked to the establishment and development of the cold HCS. Therefore, the recurrence of warming events (particularly El Niño since at least the Holocene) has submitted this cold-water species to a continuous local extinction-recolonization process.
Resumo:
The distribution patterns of calcareous dinoflagellate cysts were studied in the classic Cretaceous Tertiary (K-T) boundary section of Stevns Klint, Denmark, focusing mainly on the response of the cyst association to an abrupt environmental catastrophe. A major part of the Fish Clay, which covers the K-T boundary at its base and is exposed in the investigated section, contains fallout produced by an asteroid impact. Calcareous dinoflagenate cysts are the best preserved remains of carbonate-producing phytoplankton in this layer. The potential of this group of microfossils for the analysis of survival strategies and extinction patterns has been underestimated. The cyst species of the investigated section can be grouped into four assemblages that represent victims, survivors, opportunists, and specially adapted forms. The victims (Pithonelloideae) were an extremely successful group throughout the Upper Cretaceous, but were restricted to the narrow outer shelf. This restriction minimized their spatial distribution, which generally should be large to facilitate escape from unfavorable conditions. Spatial restriction optimized the population decrease by mass mortality, disabling a successful recovery. In contrast, the survivors that became the dominating group in the Danian had a wide spatial range from the shelf environment to the oceanic realm. A unique calcareous dinocyst assemblage in the Fish Clay shows that even under the stressed conditions immediately following the impact event, some species flourished due to special adaptation or high ecological tolerance. The ability of these dinoflagellate species to form calcareous resting cysts in combination with their generally wide spatial distribution in a variety of environments appears to be the main reason for a low extinction rate at the K-T boundary as opposed to the high extinction rate of other phytoplankton groups, such as the coccolithophorids.
Resumo:
Thirty-six different geochemical and foraminiferal analyses were conducted on samples collected at closely spaced intervals across the Cretaceous/Tertiary (K/T) boundary exposed at Caravaca, Spain. A rapid reduction in the gradient between d13C values in fine fraction carbonate and benthic foraminiferal calcite and a decrease in the abundance of phosphorus (a proxy for organic carbon) and calcium were recorded in sediments 0-0.5 cm above the K/T boundary. These trends imply that an abrupt mass mortality occurred among pelagic organisms, leading to a significant reduction in the flux of organic carbon to the seafloor. In addition, variations in sulfur isotope ratios, the hydrocarbon-generating potential of kerogen (measured as the hydrogen index), and foraminiferal indices of dissolved oxygen level all imply that a rapid decrease in dissolved oxygen was coincident with the d13C event. Evidence of the low oxygen event has also been recognized in Japan and New Zealand, suggesting that intermediate water oxygen minima were widely developed during earliest Danian time. A threefold increase in the kaolinite/illite ratio and a 1.2 per mill decrease in d18O (carbonate fine fraction) were recorded in the basal 0.1-2 cm of Danian age sediments. These trends suggest that atmospheric warming and an increase in surface water temperature occurred 0-3 kyr after the d13C event. Recovery in the difference between d13C values in the carbonate fine fraction and in benthic foraminiferal calcite as well as increases in phosphorus and calcium contents occur at the base of planktonic foraminiferal Zone Pla, implying that an increase in primary productivity commenced some 13 kyr after the K/T boundary.
Resumo:
Due to atmospheric accumulation of anthropogenic CO2 the partial pressure of carbon dioxide (pCO2) in surface seawater increases and the pH decreases. This process known as ocean acidification might have severe effects on marine organisms and ecosystems. The present study addresses the effect of ocean acidification on early developmental stages, the most sensitive stages in life history, of the Atlantic herring (Clupea harengus L.). Eggs of the Atlantic herring were fertilized and incubated in artificially acidified seawater (pCO2 1260, 1859, 2626, 2903, 4635 µatm) and a control treatment (pCO2 480 µatm) until the main hatch of herring larvae occurred. The development of the embryos was monitored daily and newly hatched larvae were sampled to analyze their morphometrics, and their condition by measuring the RNA/DNA ratios. Elevated pCO2 neither affected the embryogenesis nor the hatch rate. Furthermore the results showed no linear relationship betweenpCO2 and total length, dry weight, yolk sac area and otolith area of the newly hatched larvae. For pCO2 and RNA/DNA ratio, however, a significant negative linear relationship was found. The RNA concentration at hatching was reduced at higher pCO2 levels, which could lead to a decreased protein biosynthesis. The results indicate that an increased pCO2 can affect the metabolism of herring embryos negatively. Accordingly, further somatic growth of the larvae could be reduced. This can have consequences for the larval fish, since smaller and slow growing individuals have a lower survival potential due to lower feeding success and increased predation mortality. The regulatory mechanisms necessary to compensate for effects of hypercapnia could therefore lead to lower larval survival. Since the recruitment of fish seems to be determined during the early life stages, future research on the factors influencing these stages are of great importance in fisheries science.
Resumo:
Mass mortalities of Pacific oysters Crassostrea gigas occur regularly when temperatures are high. Elevated temperatures facilitate the proliferation and spread of pathogens and simultaneously impose physiological stress on the host. Additionally, periods of high temperatures coincide with the oyster spawning season. Spawning is energetically costly and can further compromise oyster immunity. Most studies monitoring the underlying factors of oyster summer mortality in the field, point to the involvement of abiotic and biotic factors including low salinities, high temperatures, pollutants, toxic algae blooms, pathogen exposure and physical stress in conjunction with maturation. However, studies addressing more than two factors experi- mentally are missing thus far. Therefore, we investigated the combination of three main factors including abiotic as well as internal and external biotic stressors by conducting controlled infection experiments on pre-and post-spawning as well as on gravid oysters with opportunistic Vibrio sp. at two different tempera- tures. Based on mortality rates, infection intensity and cellular immune parameters, we provide experimental evidence that all three factors (i.e. reproductive investment, elevated temperatures and infection with oppor- tunistic Vibrio sp.) act additively to the phenomenon of oyster summer mortality, leaving post-spawning oyster more susceptible to SMS than pre-spawning and gravid oysters. While previous studies found that post-spawning oysters have a lower thermal tolerance and a reduced ability to withstand pathogen infec- tions, our study now allows to separate the relative contribution of different causative agents to oyster sum- mer mortality and pinpoint to infection with pathogenic Vibrio sp. being of highest importance. In addition we can add a mechanistic understanding for the higher losses after spawning during which the phagocytic ability of hemocytes was strongly impeded resulting in insufficient clearance of pathogens.
Resumo:
Anthropogenic carbon dioxide emissions induce ocean acidification, thereby reducing carbonate ion concentration, which may affect the ability of calcifying organisms to build shells. Pteropods, the main planktonic producers of aragonite in the worlds' oceans, may be particularly vulnerable to changes in sea water chemistry. The negative effects are expected to be most severe at high-latitudes, where natural carbonate ion concentrations are low. In this study we investigated the combined effects of ocean acidification and freshening on Limacina retroversa, the dominant pteropod in sub polar areas. Living L. retroversa, collected in Northern Norwegian Sea, were exposed to four different pH values ranging from the pre-industrial level to the forecasted end of century ocean acidification scenario. Since over the past half-century the Norwegian Sea has experienced a progressive freshening with time, each pH level was combined with a salinity gradient in two factorial, randomized experiments investigating shell degradation, swimming behavior and survival. In addition, to investigate shell degradation without any physiologic influence, one perturbation experiments using only shells of dead pteropods was performed. Lower pH reduced shell mass whereas shell dissolution increased with pCO2. Interestingly, shells of dead organisms had a higher degree of dissolution than shells of living individuals. Mortality of Limacina retroversa was strongly affected only when both pH and salinity reduced simultaneously. The combined effects of lower salinity and lower pH also affected negatively the ability of pteropods to swim upwards. Results suggest that the energy cost of maintaining ion balance and avoiding sinking (in low salinity scenario) combined with the extra energy cost necessary to counteract shell dissolution (in high pCO2 scenario), exceed the available energy budget of this organism causing the pteropods to change swimming behavior and begin to collapse. Since L. retroversa play an important role in the transport of carbonates to the deep oceans these findings have significant implications for the mechanisms influencing the inorganic carbon cycle in the sub-polar area.
Resumo:
Determining which marine species are sensitive to elevated CO2 and reduced pH, and which species tolerate these changes, is critical for predicting the impacts of ocean acidification on marine biodiversity and ecosystem function. Although adult fish are thought to be relatively tolerant to higher levels of environmental CO2, very little is known about the sensitivity of juvenile stages, which are usually much more vulnerable to environmental change. We tested the effects of elevated environmental CO2 on the growth, survival, skeletal development and otolith (ear bone) calcification of a common coral reef fish, the spiny damselfish Acanthochromis polyacanthus. Newly hatched juveniles were reared for 3 wk at 4 different levels of PCO2(seawater) spanning concentrations already experienced in near-reef waters (450 µatm CO2) to those predicted to occur over the next 50 to 100 yr in the IPCC A2 emission scenario (600, 725, 850 µatm CO2). Elevated PCO2 had no effect on juvenile growth or survival. Similarly, there was no consistent variation in the size of 29 different skeletal elements that could be attributed to CO2 treatments. Finally, otolith size, shape and symmetry (between left and right side of the body) were not affected by exposure to elevated PCO2, despite the fact that otoliths are composed of aragonite. This is the first comprehensive assessment of the likely effects of ocean acidification on the early life history development of a marine fish. Our results suggest that juvenile A. polyacanthus are tolerant of moderate increases in environmental CO2 and that further acidification of the ocean will not, in isolation, have a significant effect on the early life history development of this species, and perhaps other tropical reef fishes