Seawater carbonate chemistry, length, mass and otholith development of spiny damselfish Acanthochromis polyacanthus during experiments, 2011


Autoria(s): Munday, Philip L; Gagliano, Monica; Donelson, Jennifer M; Dixon, Danielle L; Thorrold, Simon R
Data(s)

16/08/2011

Resumo

Determining which marine species are sensitive to elevated CO2 and reduced pH, and which species tolerate these changes, is critical for predicting the impacts of ocean acidification on marine biodiversity and ecosystem function. Although adult fish are thought to be relatively tolerant to higher levels of environmental CO2, very little is known about the sensitivity of juvenile stages, which are usually much more vulnerable to environmental change. We tested the effects of elevated environmental CO2 on the growth, survival, skeletal development and otolith (ear bone) calcification of a common coral reef fish, the spiny damselfish Acanthochromis polyacanthus. Newly hatched juveniles were reared for 3 wk at 4 different levels of PCO2(seawater) spanning concentrations already experienced in near-reef waters (450 µatm CO2) to those predicted to occur over the next 50 to 100 yr in the IPCC A2 emission scenario (600, 725, 850 µatm CO2). Elevated PCO2 had no effect on juvenile growth or survival. Similarly, there was no consistent variation in the size of 29 different skeletal elements that could be attributed to CO2 treatments. Finally, otolith size, shape and symmetry (between left and right side of the body) were not affected by exposure to elevated PCO2, despite the fact that otoliths are composed of aragonite. This is the first comprehensive assessment of the likely effects of ocean acidification on the early life history development of a marine fish. Our results suggest that juvenile A. polyacanthus are tolerant of moderate increases in environmental CO2 and that further acidification of the ocean will not, in isolation, have a significant effect on the early life history development of this species, and perhaps other tropical reef fishes

Formato

text/tab-separated-values, 144 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.763912

doi:10.1594/PANGAEA.763912

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Munday, Philip L; Gagliano, Monica; Donelson, Jennifer M; Dixon, Danielle L; Thorrold, Simon R (2011): Ocean acidification does not affect the early life history development of a tropical marine fish. Marine Ecology Progress Series, 423, 211-221, doi:10.3354/meps08990

Palavras-Chave #Acanthochromis polyacanthus, length; Acanthochromis polyacanthus, length, standard error; Acanthochromis polyacanthus, weight; Acanthochromis polyacanthus, weight, standard error; Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Digital camera; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; fish; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); laboratory; Measured; morphology; mortality; OA-ICC; Ocean Acidification International Coordination Centre; Otolith area; Otolith area, standard error; Otolith circularity; Otolith circularity, standard error; Otolith length; Otolith length, standard error; Otolith perimeter; Otolith perimeter, standard error; Otolith rectangularity; Otolith rectangularity, standard error; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; pH meter (HQ11D, Hach Co., Loveland, CO); Salinity; see reference(s); South Pacific; Temperature, water
Tipo

Dataset