28 resultados para Leg Clubs, leg ulcers, peer support, social integration
em Publishing Network for Geoscientific
Resumo:
The study of the main characteristics of ash layers in Leg 57 cores shows that they are suitable for an analysis of the effect on eruptive activity of their distribution. We found (1) sediment recovery good and ash layers numerous; (2) sedimentary environment generally free from terrigenous clastic material; (3) reworking limited; (4) volcanic glass very acidic, ranging from rhyolitic to rhyodacitic composition; and (5) alteration and diagenesis negligible above the lower Miocene. The curves of explosive volcanic activity in Holes 438, 439, and 440 display two stages of high activity: an early one around 16 m.y. and a late one starting 5 m.y. B.P., both stages being separated by an upper Miocene quiescence. Detail in these results is limited by the chemical composition of the glass and accounts only for trends in explosive acid volcanism. Nevertheless, results are roughly in agreement with other data from the Northwest Pacific, although some discrepancies in the correlation of intensity of the episodes occur. The data from Leg 57 support the hypothesis of synchronous pulses in explosive volcanism.
Resumo:
Broken Ridge, in the eastern Indian Ocean, is a shallow-water volcanic platform which formed during the Early to middle Cretaceous at which time it comprised the northern portion of the Kerguelen-Heard Plateau. Rifting during the middle Eocene and subsequent seafloor spreading has moved Broken Ridge about 20?N to its present location. The sedimentary section of Broken Ridge includes Turonian-lower Eocene limestone and chalk with volcanic ash, an interval of detrital sands and gravels associated with middle Eocene rifting and uplift, and a middle-late Oligocene unconformity overlain by a thin section of Neogene-Holocene pelagic calcareous ooze. This paper summarizes the available post-cruise biostratigraphic and magnetostratigraphic data for the Cretaceous-Paleogene section on Broken Ridge. The synthesis of this information permits a more precise interpretation of the timing of events in the history of Broken Ridge, in particular the timing and duration of the middle Eocene rifting event. Paleontologic data support rapid flexural uplift of Broken Ridge in response to mechanical rather than thermal forces. Other highlights of the section include a complete Cretaceous/Tertiary boundary and an opportunity for first-order correlation of Paleogene diatom stratigraphy with that of the calcareous groups.
Resumo:
Deformation features within the cores are studied with a view towards elucidating the structure of the Middle America Trench along the transect drilled during Leg 67. Where possible, inferences are made as to the physical environment of deformation. Extensional tectonics prevails in the area of the seaward slope and trench. Fracturing and one well-preserved normal fault are found mostly within the lower Miocene chalks, at the base of the sedimentary section. These chalks have high porosities (40%-60%) and water content (30%-190%, based on % dry wt.). Experimental triaxial compression tests conducted on both dry and water-saturated samples of chalk from Holes 495 and 499B show that only in the saturated samples is more brittle behavior observed. Brittle failure of the chalks is greatly facilitated by pore fluid pressures that lead to low effective pressures. Additional embrittlement (weakening) can take place as a result of the imposed extensional stress resulting from bending of a subducting elastic oceanic plate. The chalks exhibit, in a landward direction, an increase in density and mechanical strength and a decrease in water content. These changes are attributed to mechanical compaction that may have resulted from tectonic horizontal compression. The structure of the landward slope is not well understood because the slope sites had to be abandoned due to the presence of gas hydrate. The relationship of the chaotic, brittle deformation (observed in the cores from Hole 494A) at the base of the landward slope to tectonic processes remains unclear. The deformation observed on the slope sites (Holes 496 and 497) is mostly fracturing and near-vertical sigmoidal veinlets. These are interpreted as being the result of gas/fluid overpressurization due to the decomposition of the gas hydrate, and not due to tectonic loading of accreted sediments. Aside from four small displacement (less than 1cm) reverse faults observed in the lower Miocene chalks (which may be the product of soft-sediment deformation), there is a noticeable absence of structures reflecting a dominance of horizontal (tectonic) compression along the transect drilled. The absence of such features, the lack of continuity of sediment types across the trench-landward slope, and the normal stratigraphic sequence in Hole 494A do not support any known accretionary model.
Resumo:
A paleomagnetic study was made of 12 samples of trachytic basalt from the base of ODP Hole 698A on the Northeast Georgia Rise (southwest Atlantic) and four samples of andesitic basalt and nine samples of volcanic breccia from the base of ODP Hole 703A on the Meteor Rise (southeast Atlantic). The magnetic intensities of the Hole 703A samples are anomalously low, possibly reflecting alteration effects. The mean magnetic intensity of the Hole 698A samples is high, and compatible with the model of Bleil and Petersen (1983) for the variation of magnetic intensity with age in oceanic basalts, involving progressive low-temperature oxidation of titanomagnetite to titanomaghemite for some 20 m.y. followed by inversion to intergrowths of magnetite and other Fe-Ti oxides during the subsequent 100 m.y. These results support the interpretation of the Hole 698A basalts as true oceanic basement of Late Cretaceous age rather than a younger intrusion. Well-defined stable components of magnetization were identified from AF and thermal demagnetization of the Hole 698A basalts, and less well-defined components were identified for the Hole 703A samples. Studies of the magnetic homogeneity of the Hole 698A basalts, involving harmonic analysis of the spinner magnetometer output, indicate the presence of an unevenly distributed low-coercivity component superimposed on the more homogeneous high-coercivity characteristic magnetization. The former component is believed to reside in irregularly distributed multidomain magnetite grains formed along cracks within the basalt, whilst the latter resides in more uniformly distributed finer magnetic grains. The inclination values for the high-coercivity magnetization of five Hole 698A basalt samples form an internally consistent set with a mean value of 59° ± 5°. The corresponding Late Cretaceous paleolatitude of 40° ± 5° is shallower than expected for this site but is broadly compatible with models for the opening of the South Atlantic involving pivoting of South America away from Africa since the Early Cretaceous. The polarity of the stable characteristic magnetization of the Site 698 basalts is normal. This is consistent with their emplacement during the long Campanian to Maestrichtian normal polarity Chron C33N.
Resumo:
High-resolution bio- and chemostratigraphy of an earliest Pliocene section from ODP Site 652 indicates that postflood paleoceanographic conditions in the Tyrrhenian Sea can be sub-divided into two discrete intervals. The first is manifested by an acme of Sphaeroidinellopsis spp., increasing carbonate contents, and a progressive decrease upsection in both the d13C and dl8O values of the planktonic foraminifera. The lower part of the acme interval contains unusual surface-to-bottom water isotope gradients suggesting a stratification of two water masses. Normal gradients in the upper part of the acme interval suggest a well-mixed water body. Between the end of the acme interval and the MP11/MP12 boundary, denoted by the first occurrence (F.O.) of Globorotalia margaritae, a migrational first appearance, there was a catastrophic collapse of the gradient marking an onset of the second post-flood interval. The disintegration of habitable conditions is suggested by a sharp decrease in carbonate content and the disappearance of the benthonic assemblage, which is subsequently replaced predominantly by Uvigerinapygmea, indicative of cold, low-oxygenated bottom waters. The introduction of benthonic species denoting well-oxygenated bottom conditions occurs within the lower MP12 zone. Superimposed on these overall trends are shorter term, warm-cold cycles, which are interpreted as orbitally induced, climatic fluctuations. Correlative studies of the less complete earliest Pliocene sections from ODP Holes 653B and 654A confirm these interpretations. A scenario derived from an integration of all the stratigraphic data indicates that normal paleoceanographic conditions were operating in the Tyrrhenian Sea only approximately 250,000 yr after the cessation of Messinian evaporative conditions at the Miocene/Pliocene boundary. The post-flood interval is marked by an initial period of gradual infilling, the Sphaeroidinellopsis spp. acme interval, followed by a disintegration of oceanographic conditions and a second recovery period. A sudden influx of cold, deep Atlantic waters into the Tyrrhenian Sea, resulting from a major tectonic break in the Gibraltar sill, may have caused this catastrophic reversal in the orderly recovery of normal paleoceanographic conditions in the post-flood period.
Resumo:
Integration of biostratigraphic and magnetostratigraphic results from Leg 135 sites has given additional information as to the position and reliability of various bioevents compared with previously published results. Two sites (834: Gilbert to Brunhes; and 836: Brunhes) provided excellent magnetic and biostratigraphic data. From these it is suggested that some bioevents are older than previously recorded: the first appearances (FAs) of Emiliania huxleyi (within the Brunhes Chron, at the same level as the FA of Helicosphaera inversa) and Globorotalia (Truncorotalia) truncatulinoides (within the upper Gauss Chron), and the last appearance (LA) of Gr. (Tr.) tosaensis (upper Matuyama Chron). The FA of Gr. (Tr.) crassaformis hessi is variable, but the oldest occurrence is just below the Cobb Mountain Subchron. Other key bioevents, such as the LAs of Discoaster pentaradiatus (just above the Réunion Subchron), D. tamalis (within the lower reversed part of the Matuyama Chron), Sphenolithus (lower Gauss Chron), and Amaurolithus primus (topmost Gilbert Chron) appear higher than previously recorded. Some key biostratigraphic taxa, such as Globigerinoides quadrilobatus fistulosus, Pulleniatina finalis, P. primalis, and Sphaeroidinella dehiscens, are either rare or their distribution is sporadic to the extent that they are unsuitable for biostratigraphic use in the area studied. Because of the rarity of P. primalis, the FA of Globorotalia (Globorotalia) multicamerata has been used to mark the base of Zone N17B. Though levels are present at most sites in which populations of Pulleniatina are sinistrally coiled, it is difficult to equate these coiling changes with previous records.
Resumo:
Analyses of sediments from Leg 64 sites reveal a diverse and in one case unique geochemistry. Sites are characterized by high heat flow along an active, divergent plate boundary, or rapid accumulation of diatom muds, or both. The geochemical trends of Sites 474-476 at the tip of Baja California reflect changes4n the percentages of sedimentary components - particularly biogenous matter and mineralogy - that support interpretations of sedimentary environments inferred to be present since the commencement of subsidence along this young, passive continental margin. The sediments below dolerite sills in Holes 477, 477A, 478, and 481 show major mineralogic and chemical deviations from "average" hemipelagic sediments. The sills appear to have two functions: (1) they allow hydrothermal circulation and metamorphism in a partially closed system by trapping heat and fluids emanating from below, and (2) they expel heated interstitial fluids at the moment of intrusion and mobilize elements, most likely leading to the formation of metalliferous deposits along the surface traces of normal faults in the basin. The hydrothermal system as a whole appears to be localized and ephemeral, as is indicated by the lack of similar geochemical trends and high heat flow at Sites 478 and 481. Site 479 illustrates sedimentation in an oxygen-minimum zone with anoxic sediments and concomitant geochemical trends, especially for MnO. With few exceptions, geochemical trends are remarkably constant with depth, suggesting that Site 479 can serve as an "internal" standard or average sediment against which the magnitude of hydrothermal alteration at the basinal Sites 477, 478, and 481 can be measured.
Resumo:
In this manuscript, we present rock magnetic results of samples recovered during Leg 183. The Leg 183 cores were recovered from six drill sites and display variable rock magnetic properties. The differences in the rock magnetic properties are a function of mineralogy and alteration. Cretaceous subaerial basalt samples with titanomagnetite exhibit a strong Verwey transition in the vicinity of 110 K and have frequency-dependent susceptibility curves that resemble those of synthetic (titano) magnetites. These results are in good agreement with the thermomagnetic characteristics where titanomagnetites with Curie temperatures of ~580°C were identified. The hysteresis ratios suggest that the bulk magnetic grain size is in the psuedo-single-domain boundary. These subaerial basalts experienced high-temperature oxidation and maintained reliable paleomagnetic records. In contrast, the 34-Ma submarine pillow basalts do not show the Verwey transition during the low-temperature experiments. Thermomagnetic analysis shows that the remanent magnetization in this group is mainly carried by a thermally unstable mineral titanomaghemite. The frequency-dependent relationships are opposite of those from the first group and show little sign of titanomagnetite characteristics. Rocks from the third group are oxidized titanomagnetites and have multiple magnetic phases. They have irreversible thermaomagnetic curves and hysteresis ratios clustering toward the multidomain region (with higher Hcr/Hc ratios). The combined investigation suggests that variations in magnetic properties correlate with changes in lithology, which results in differences in the abundance and size of magnetic minerals. The rock magnetic data on Leg 183 samples clearly indicate that titanomagnetite is the dominant mineral and the primary remanence carrier in subaerial basalt. The generally good magnetic stability and other properties exhibited by titanomagnetite-bearing rocks support the inference that the ChRM isolated from the Cretaceous sites were acquired during the Cretaceous Normal Superchron. The stable inclinations identified from these samples are therefore useful for future tectonic studies.
Resumo:
Anaerobic methane oxidation (AMO) was characterized in sediment cores from the Blake Ridge collected during Ocean Drilling Program (ODP) Leg 164. Three independent lines of evidence support the occurrence and scale of AMO at Sites 994 and 995. First, concentration depth profiles of methane from Hole 995B exhibit a region of upward concavity suggestive of methane consumption. Diagenetic modeling of the concentration profile indicates a 1.85-m-thick zone of AMO centered at 21.22 mbsf, with a peak rate of 12.4 nM/d. Second, subsurface maxima in tracer-based sulfate reduction rates from Holes 994B and 995B were observed at depths that coincide with the model-predicted AMO zone. The subsurface zone of sulfate reduction was 2 m thick and had a depth integrated rate that compared favorably to that of AMO (1.3 vs. 1.1 nmol/cm**2/d, respectively). These features suggest close coupling of AMO and sulfate reduction in the Blake Ridge sediments. Third, measured d13CH4 values are lightest at the point of peak model-predicted methane oxidation and become increasingly 13C-enriched with decreasing sediment depth, consistent with kinetic isotope fractionation during bacterially mediated methane oxidation. The isotopic data predict a somewhat (60 cm) shallower maximum depth of methane oxidation than do the model and sulfate reduction data.
Resumo:
We present grain size, granulometric statistical parameters, and calcium carbonate content of sediment samples from the summit and east and west flanks of southern Hydrate Ridge (Sites 1244-1250). These data are compared with magnetic susceptibility measurements from the same intervals. Bulk and clay mineralogy from Sites 1244 (east flank), 1247 (west flank), and 1250 (summit) are also presented. The integration of these data allows us to characterize the main sedimentary facies and composition of the Quaternary age sediments from southern Hydrate Ridge.
Resumo:
The basalts in Holes 519A, 522B, and 524 were studied for intensity of natural remanent magnetization, magnetic hysteresis, magnetic susceptibility, stability of isothermal remanence, and thermomagnetic behavior. Some of these properties are sensitive to both the composition and the microstructure of the magnetic minerals, others to composition only. Thus it is possible to separate the two effects and to trace the variation of effective magnetic grain size and degree of alteration within a lithologic unit or over a yet larger distance or time interval. The flow in Hole 519A is highly maghemitized at the top, the degree of maghemitization decreasing with depth in the flow. Effective grain size increases with increasing depth. Electron microprobe analysis of the titanomaghemite grains in these samples provides no support for the leaching out of iron during alteration. The pillows and flows in Hole 522B are distributed among a number of cooling units, and no systematic downhole variations are apparent. The inferred magneto-petrology is consistent with the cooling and alteration history that might be expected within the units. The upper and lower sills in Hole 524 are more uniform and have a larger concentration of well-developed magnetic mineral grains than the pillows and flows in Holes 519A and 522B. Maghemitization appears to have developed from the boundaries of the sills that are in contact with the sediments between the sills.
Resumo:
Late Cretaceous (Maastrichtian)-Quaternary summary biostratigraphies are presented for Ocean Drilling Program (ODP) Leg 189 Sites 1168 (West Tasmanian Margin), 1170 and 1171 (South Tasman Rise), and 1172 (East Tasman Plateau). The age models are calibrated to magnetostratigraphy and integrate both calcareous (planktonic foraminifers and nannofossils) and siliceous (diatoms and radiolarians) microfossil groups with organic walled microfossils (organic walled dinoflagellate cysts, or dinocysts). We also incorporate benthic oxygen isotope stratigraphies into the upper Quaternary parts of the age models for further control. The purpose of this paper is to provide a summary age-depth model for all deep-penetrating sites of Leg 189 incorporating updated shipboard biostratigraphic data with new information obtained during the 3 yr since the cruise. In this respect we provide a report of work to November 2003, not a final synthesis of the biomagnetostratigraphy of Leg 189, yet we present the most complete integrated age model for these sites at this time. Detailed information of the stratigraphy of individual fossil groups, paleomagnetism, and isotope data are presented elsewhere. Ongoing efforts aim toward further integration of age information for Leg 189 sites and will include an attempt to correlate zonation schemes for all the major microfossil groups and detailed correlation between all sites.
Resumo:
A series of upper Pliocene to Pleistocene sediment samples from DSDP Sites 582 and 583 (Nankai Trough, active margin off Japan) were investigated by organic geochemical methods including organic carbon determination, Rock- Eval pyrolysis, gas chromatography of extractable hydrocarbons, and kerogen microscopy. The organic carbon content is fairly uniform and moderately low (0.35 to 0.77%) at both sites, although accompanied by high sedimentation rates. The low organic matter concentrations are the result of the combined effect of several factors: low bioproductivity, oxic depositional environment, and dilution with lithogenic material. Organic petrography revealed a mixture of three maceral types: (1) fresh, green fluorescent alginites of aquatic origin probably transported by turbidites from the shelf edge, (2) gelified huminites and paniculate liptinites derived from the erosion of unconsolidated peat, and (3) highly reflecting inertinites derived from continental erosion. By a combination of organic petrography and Rock-Eval pyrolysis results, the organic matter is characterized as mainly type III kerogen with a slight tendency to a mixed type II-III. During Rock-Eval pyrolysis, a mineral matrix effect on the generated hydrocarbons was observed. The organic matter in all sediments has a low level of maturity (below 0.45% Rm) and has not yet reached the onset of thermal hydrocarbon generation according to several geochemical maturation parameters. This low maturity is in contrast to anomalously high extract yields at both sites and large hydrocarbon proportions in the extracts at Site 583. This contrast may be due to early generation of polar compounds and perhaps redistribution of hydrocarbons caused by subduction tectonics. Carbon isotope data of the interstitial hydrocarbon gases indicate their origin from bacterial degradation of organic matter, although only very few bacterially degraded maceral components were detected.
Resumo:
We analyzed samples from ODP Holes 652A and 654A (Leg 107, Tyrrhenian Sea) for the amount, type, and thermal maturity of organic matter. The sediments encompass clastic and biogenic lithologies, which were deposited on the passive margin east of Sardinia since the late Miocene to the Pleistocene. Marine, hypersaline/evaporitic, lacustrine/riverine, and finally hemipelagic marine conditions with occasional anoxic(?) interludes gave rise to very diverse sedimentary facies. The majority of samples is lean in organic matter (<0.2% TOC). Notable exceptions are Tortonian sediments (TOC average 0.3%), Messinian oil shales from Core 107-652A-64R (up to 11% TOC), Messinian lacustrine/fluvial sediments from Hole 652A (TOC average 0.42%,), and Pleistocene sapropel samples (>2% TOC). The Messinian oil shale in Hole 652A appears to be the only mature hydrocarbon source rock. In general, Pliocene sediments are the leanest and least mature samples. Pleistocene and Pliocene samples derive organic matter from a marine source. In spite of obvious facies differences in the Messinian between the two sites, pyrolysis results are not conclusive in separating hypersaline facies of Site 654 from the fresh water facies of Site 652, because both appear to have received terrestrial organic tissue as the main component of TOC. It is apparent from the distribution of maximum pyrolysis temperatures that heat flow must have been considerably higher at Site 652 on the lower margin in the Messinian. Molecular maturity indices in lipid extracts substantiate the finding that the organic matter in Tortonian and Messinian samples from Hole 654A is immature, while thermal maturation is more advanced in coeval samples from Hole 652A. Analyses of lipid biomarkers showed that original odd-even predominance was preserved in alkanes and alkylcyclohexanes from Messinian samples in Hole 654A, while thermal maturation had removed any odd-even predominance in Hole 652A. Isomerization data of hopanes and steranes support these differences in thermal history for the two sites. Hopanoid distribution further suggests that petroleum impregnation from a deeper, more mature source resulted in the co-occurrence of immature and mature groups of pentacyclic biomarkers. Even though the presence of 4-methylsteranes may imply that dinoflagellates were a major source for organic matter in the oil shale interval of Hole 652, we did not find intact dinoflagellates or related nonskeletal algae during microscopic investigation of the organic matter in the fine laminations. Morphologically, the laminations resemble bacterial mats.
Resumo:
This research was designed to check the assumption of the grain-size control on a gas hydrate presence in the Blake Ridge sediments; the assumption had originated from the data gained at Deep Sea Drilling Project (DSDP) Site 533. Granulometric analysis (the combined pipette-sieve method) of the 345 sediment samples obtained after pore-water squeezing from Ocean Drilling Program (ODP) Sites 994, 995, and 997 has provided support for this assumption. The zone of negative anomalies of pore-water chlorinity, which is generally recognized to be gas hydrate bearing, is confined, as a whole, to the interval of comparatively coarse-grained sediments in each of the three site columns because content of the fine fractions <0.05, <0.01, <0.005, and <0.001 mm is lower there (although the character of this control changes from site to site). The individual chlorinity anomalies also coincide, for the most part, with relatively coarse-grained sediments.