68 resultados para Indoor and outdoor air
em Publishing Network for Geoscientific
Resumo:
Saharan dust incursions and particulates emitted from human activities degrade air quality throughout West Africa, especially in the rapidly expanding urban centers in the region. Particulate matter (PM) that can be inhaled is strongly associated with increased incidence of and mortality from cardiovascular and respiratory diseases and cancer. Air samples collected in the capital of a Saharan-Sahelian country (Bamako, Mali) between September 2012 - July 2013 were found to contain inhalable PM concentrations that exceeded World Health Organization (WHO) and US Environmental Protection Agency (USEPA) PM2.5 and PM10 24-h limits 58 - 98% of days and European Union (EU) PM10 24-h limit 98% of days. Mean concentrations were 1.2-to-4.5 fold greater than existing limits. Inhalable PM was enriched in transition metals, known to produce reactive oxygen species and initiate the inflammatory reaction, and other potentially bioactive and biotoxic metals/metalloids. Eroded mineral dust composed the bulk of inhalable PM, whereas most enriched metals/metalloids were likely emitted from oil combustion, biomass burning, refuse incineration, vehicle traffic, and mining activities. Human exposure to inhalable PM and associated metals/metalloids over 24-h was estimated. The findings indicate that inhalable PM in the Sahara-Sahel region may present a threat to human health, especially in urban areas with greater inhalable PM and transition metal exposure.
Resumo:
The South Shetland Islands are located at the northern tip of the AP which is among the fastest warming regions on Earth. The islands are especially vulnerable to climate change due to their exposure to transient low-pressure systems and their maritime climate. Surface air temperature increases (2.5K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. We have compiled a unique meteorological data set for the King George Island (KGI)/Isla 25 de Mayo, the largest of the South Shetland Islands. It comprises high-temporal resolution and spatially distributed observations of surface air temperature, wind directions and wind velocities, as well as glacier ice temperatures in profile with a fully equipped automatic weather station on the Warszawa Icefield, from November 2010 and ongoing. In combination with two long-term synoptic datasets (40 and 10 years, respectively) and NCEP/NCAR reanalysis data, we have looked at changes in the climatological drivers of the glacial melt processes, and the sensitivity of the inland ice cap with regard to winter melting periods and pressure anomalies. The analysis has revealed, a positive trend of 5K over four decades in minimum surface air temperatures for winter months, clearly exceeding the published annual mean statistics, associated to a decrease in mean monthly winter sea level pressure. This concurs with a positive trend in the Southern Annular Mode (SAM) index, which gives a measure for the strength and extension of the Antarctic vortex. We connect this trend with a higher frequency of low-pressure systems hitting the South Shetland Islands during austral winter, bringing warm and moist air masses from lower latitudes. Due to its exposure to the impact of transient synoptic weather systems, the ice cap of KGI is especially vulnerable to changes during winter glacial mass accumulation period. A revision of seasonal changes in adiabatic air temperature lapse rates and their dependency on exposure and elevation has shown a clear decoupling of atmospheric surface layers between coastal areas and the higher-elevation ice cap, showing the higher sensitivity to free atmospheric flow and synoptic changes. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0K/100 m), and a distinct spatial variability reflecting the impact of synoptic weather patterns. The observed advective conditions bringing warm, moist air with high temperatures and rain, lead to melt conditions on the ice cap, fixating surface air temperatures to the melting point. This paper assesses the impact of large-scale atmospheric circulation variability and climatic changes on the atmospheric surface layer and glacier mass accumulation of the upper ice cap during winter season for the Warszawa Icefield on KGI.
Resumo:
The statistical record of the length of Austrian glaciers is continued with an improved classification scheme. The tendency of increasing glacier advance is maintained since 1965. 54 glaciers, or 58 % of the 93 observed, were advancing in 1975. A relation that is noticed between the behavior of the terminus and mean air temperature of the ablation period is discussed in qualitative terms.
Resumo:
The east coast of the AP is highly influenced by cold and dry air masses stemming from the adjacent Weddell Sea. By the contrary, the west coast jointly with the South Shetland Islands are directly exposed to the humid and relatively warm air masses from the South Pacific Ocean carried by the strong and persistent westerly winds. Systematic glaciological field studies are very scarce on both sides of the AP, among them can be mentioned a mass-balance program performed continuously since summer 1998/99 by the Instituto Antártico Argentino (IAA) on Vega Island, James Ross Archipelago, on the northeastern flank of the AP. Another continuous plurianual glaciological research has been initiated in 2010 jointly by the University of Bonn and the IAA at the Fourcade Glacier on King George Island (KGI) within the framework of the ESF project IMCOAST (FK 03F0617B). Two transects of mass balance stakes were installed from the top of the Warszawa Ice Dome down to the border of the glaciers Fourcade and Polar Club, to serve for calibration and validation of modeling efforts. The stakes were measured at the beginning and end of each summer field campaign in November 2010, February - March 2011, January - March 2012, and especially during the austral winter 2012 up to March 2013 every 10 to 14 days depending on weather conditions. During the austral winter 2013 and until June 2014 the measurements were conducted every 20 to 30 days, weather permitting. Snow density was measured as well in every field trip from June 2012 until June 2104, establishing a rather homogeneous value along the different parts of the glacier. Snow density in late summer, rho_s is usually higher than the one in late winter, rho_w. Seasonal average values were calculated for the area covered by the mass balance stakes, being rho_s= 471 Kg/m**3 and rho_w = 363 Kg/m**3.
Resumo:
At Ny-Ålesund (78.9° N), Svalbard, surface radiation measurements of up- and downward short- and longwave radiation are operated since August 1992 in the frame of the Baseline Surface Radiation Network (BSRN), complemented with surface and upper air meteorology since August 1993. The long-term observations are the base for a climatological presentation of the surface radiation data. Over the 21-year observation period, ongoing changes in the Arctic climate system are reflected. Particularly, the observations indicate a strong seasonality of surface warming and related changes in different radiation parameters. The annual mean temperature at Ny-Ålesund has risen by +1.3 ± 0.7 K per decade, with a maximum seasonal increase during the winter months of +3.1 ± 2.6 K per decade. At the same time, winter is also the season with the largest long-term changes in radiation, featuring an increase of +15.6 ± 11.6 W/m**2 per decade in the downward longwave radiation. Furthermore, changes in the reflected solar radiation during the months of snow melt indicate an earlier onset of the warm season by about 1 week compared to the beginning of the observations. The online available dataset of Ny-Ålesund surface radiation measurements provides a valuable data source for the validation of satellite instruments and climate models.
Resumo:
The sub-Antarctic zone (SAZ) lies between the subtropical convergence (STC) and the sub-Antarctic front (SAF), and is considered one of the strongest oceanic sinks of atmospheric CO2. The strong sink results from high winds and seasonally low sea surface fugacities of CO2 (fCO2), relative to atmospheric fCO2. The region of the SAZ, and immediately south, is also subject to mode and intermediate water formation, yielding a penetration of anthropogenic CO2 below the mixed layer. A detailed analysis of continuous measurements made during the same season and year, February - March 1993, shows a coherent pattern of fCO2 distributions at the eastern (WOCE/SR3 at about 145°E) and western edges (WOCE/I6 at 30°E) of the Indian sector of the Southern Ocean. A strong CO2 sink develops in the Austral summer (delta fCO2 < - 50 µatm) in both the eastern (110°-150°E) and western regions (20°-90°E). The strong CO2 sink in summer is due to the formation of a shallow seasonal mixed-layer (about 100 m). The CO2 drawdown in the surface water is consistent with biologically mediated drawdown of carbon over summer. In austral winter, surface fCO2 is close to equilibrium with the atmosphere (delta fCO2 ± 5 µatm), and the net CO2 exchange is small compared to summer. The near-equilibrium values in winter are associated with the formation of deep winter mixed-layers (up to 700 m). For years 1992-95, the annual CO2 uptake for the Indian Ocean sector of the sub Antarctic Zone (40°-50°S, 20°-150°E) is estimated to be about 0.4 GtC/yr. Extrapolating this estimate to the entire sub-Antarctic zone suggests the uptake in the circumpolar SAZ is approaching 1 GtC/yr.
Resumo:
During a four weeks anchoring station of R.V. ,,Meteor" on the equator at 30° W longitude, vertical profiles of wind, temperature, and humidity were measured by means of a meteorological buoy carrying a mast of 10 m height. After eliminating periods of instrumental failure, 18 days are available for the investigation of the diurnal variations of the meteorological parameters and 9 days for the investigation of the vertical heat fluxes. The diurnal variations of the above mentioned quantities are caused essentially by two periodic processes: the 24-hourly changing solar energy supply and the 12-hourly oscillation of air pressure, which both originate in the daily rotation of the earth. While the temperature of the water and of the near water layers of the air show a 24 hours period in their diurnal course, the wind speed, as a consequence of the pressure wave, has a 12 hours period, which is also observable in evaporation and, consequently, in the water vapor content of the surface layer. Concerning the temperature, a weak dependence of the daily amplitude on height was determined. Further investigation of the profiles yields relations between the vertical gradients of wind, temperature, and water vapor and the wind speed, the difference between sea and air of temperature and water vapor, respectively, thus giving a contribution to the problem of parameterizing the vertical fluxes. Mean profile coefficients for the encountered stabilities, which were slightly unstable, are presented, and correction terms are given due to the fact that the conditions at the very surface are not sufficiently represented by measuring in a water depth of 20 cm and assuming water vapor saturation. This is especially true for the water vapor content, where the relation between the gradient and the air-sea difference suggests a reduction of relative humidity to appr. 96% at the very surface, if the gradients are high. This effect may result in an overestimation of the water vapor flux, if a ,,bulk"-formula is used. Finally sensible and latent heat fluxes are computed by means of a gradient-formula. The influence of stability on the transfer process is taken into account. As the air-sea temperature differences are small, sensible heat plays no important role in that region, but latent heat shows several interesting features. Within the measuring period of 18 days, a regular variation by a factor of ten is observed. Unperiodic short term variations are superposed by periodic diurnal variations. The mean diurnal course shows a 12-hours period caused by the vertical wind speed gradient superposed by a 24-hours period due to the changing stabilities. Mean values within the measuring period are 276 ly/day for latent heat and 9.41y/day for sensible heat.
Resumo:
The Mediterranean Sea is at the transition between temperate and tropical air masses and as such of importance for studying climate change. The Gulf of Taranto and adjacent SW Adriatic Sea are at the heart of this region. Their sediments are excellently suited for generating high quality environmental records for the last millennia with a sub-decadal resolution. The quality of these records is dependent on a careful calibration of the transfer functions used to translate the sedimentary lipid signals to the local environment. Here, we examine and calibrate the UK'37 and TEX86 lipid-based temperature proxies in 48 surface sediments and relate these to ambient sea surface temperatures and other environmental data. The UK'37-based temperatures in surface sediments reflect winter/spring sea surface temperatures in agreement with other studies demonstrating maximum haptophyte production during the colder season. The TEX86-based temperatures for the nearshore sites also reflect winter sea surface temperatures. However, at the most offshore sites, they correspond to summer sea surface temperatures. Additional lipid and environmental data including the distribution of the BIT index and remote-sensed chlorophyll-a suggest a shoreward increase of the impact of seasonal and spatial variability in nutrients and control of planktonic archaeal abundance by primary productivity, particle loading in surface waters and/or overprint by a cold-biased terrestrial TEX86 signal. As such the offshore TEX86 values seem to reflect a true summer signal to the effect that offshore UK'37 and TEX86 reconstruct winter and summer temperature, respectively, and hence provide information on the annual temperature amplitude.
Resumo:
The relative contribution of soft bottoms to the community metabolism (primary production, respiration and net calcification) of a barrier reef flat has been investigated at Moorea (French Polynesia). Community metabolism of the sedimentary area was estimated using in situ incubations in perspex chambers, and compared with estimates of community metabolism of the whole reef flat obtained using a Lagrangian technique (Gattuso et al., 1996. Carbon flux in coral reefs. 1. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Mar. Ecol. Prog. Ser. 145, 109-121). Net organic carbon production (E), respiration (R) and net calcification (G) of sediments were measured by seven incubations performed in triplicate at different irradiance. Respiration and environmental parameters were also measured at four randomly selected additional stations. A model of Photosynthesis-irradiance allowed to calculate oxygen (O2), organic carbon (CO2) and calcium carbonate (CaCO3) evolution from surface irradiance during a diel cycle. As chlorophyll a content of the sediment was not significantly different between stations, primary production of the sediment was considered as homogeneous for the whole lagoon. Thus, carbon production at the test station can be modelled from surface light irradiance. The modelled respiration was two times higher at the test station than the mean respiration of the barrier reef, and thus underestimated sediment contribution to excess production. Sediments cover 40-60% of the surface and accounted for 2.8-4.1% of organic carbon excess production estimated with the modelled R and 21-32% when mean R value was considered. The sedimentary CaCO3 budget was a very minor component of the whole reef budget.
Resumo:
One main point of our atmospheric-electric measurements over the Atlantic Ocean 1973 was the investigation of the air-earth current density above the sea. In addition to direct measurements at the water surface with a floating net, we calculated the air-earth current density from the electric field and the air conductivity measured simultaneously on board of the ship and during particular ascents in the free atmosphere. During all five ascents the air-earth current density did not change with altitude. For pure maritime air-conditions, the mean air-earth current density was found to be 2.9 pA/m**2. The mean hourly air-earth current density over the Atlantic shows nearly the same 24-hour pattern as measured by Cobb (1977) at the South Pole at the same time. When dust-loaden air masses of African origin reached the ship as well as under continental influence the mean air-earth current density was reduced to 2.1 pA/m**2. The global 24-hour pattern was modified by this continental influences. Finally, it is shown that the values of the air conductivity measured on board R. V. "Meteor" during our earlier expeditions have been influenced by the exhaust of the ship and must therefore be corrected. With this correction, our new mean values of the air-earth current density over the Atlantic are 2.6 pA/m**2 in 1965 and 2.0 pA/m**2 in 1969. From all measurements, the global air-earth current is estimated to be about 1250 A.
Resumo:
Climatic changes are most pronounced in northern high latitude regions. Yet, there is a paucity of observational data, both spatially and temporally, such that regional-scale dynamics are not fully captured, limiting our ability to make reliable projections. In this study, a group of dynamical downscaling products were created for the period 1950 to 2100 to better understand climate change and its impacts on hydrology, permafrost, and ecosystems at a resolution suitable for northern Alaska. An ERA-interim reanalysis dataset and the Community Earth System Model (CESM) served as the forcing mechanisms in this dynamical downscaling framework, and the Weather Research & Forecast (WRF) model, embedded with an optimization for the Arctic (Polar WRF), served as the Regional Climate Model (RCM). This downscaled output consists of multiple climatic variables (precipitation, temperature, wind speed, dew point temperature, and surface air pressure) for a 10 km grid spacing at three-hour intervals. The modeling products were evaluated and calibrated using a bias-correction approach. The ERA-interim forced WRF (ERA-WRF) produced reasonable climatic variables as a result, yielding a more closely correlated temperature field than precipitation field when long-term monthly climatology was compared with its forcing and observational data. A linear scaling method then further corrected the bias, based on ERA-interim monthly climatology, and bias-corrected ERA-WRF fields were applied as a reference for calibration of both the historical and the projected CESM forced WRF (CESM-WRF) products. Biases, such as, a cold temperature bias during summer and a warm temperature bias during winter as well as a wet bias for annual precipitation that CESM holds over northern Alaska persisted in CESM-WRF runs. The linear scaling of CESM-WRF eventually produced high-resolution downscaling products for the Alaskan North Slope for hydrological and ecological research, together with the calibrated ERA-WRF run, and its capability extends far beyond that. Other climatic research has been proposed, including exploration of historical and projected climatic extreme events and their possible connections to low-frequency sea-atmospheric oscillations, as well as near-surface permafrost degradation and ice regime shifts of lakes. These dynamically downscaled, bias corrected climatic datasets provide improved spatial and temporal resolution data necessary for ongoing modeling efforts in northern Alaska focused on reconstructing and projecting hydrologic changes, ecosystem processes and responses, and permafrost thermal regimes. The dynamical downscaling methods presented in this study can also be used to create more suitable model input datasets for other sub-regions of the Arctic.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
The timing and nature of the penultimate deglaciation, also known as Termination II (T-II), is subject of controversial discussions due to the scarcity of precisely-dated palaeoclimate records. Here we present a new precisely-dated and highly-resolved multi-proxy stalagmite record covering T-II from the high alpine Schafsloch Cave in Switzerland, an area where climate is governed by the North Atlantic. The inception of stalagmite growth at 137.4 ± 1.4 kyr before present (BP) indicates the presence of drip water and cave air temperatures of above 0 °C, and is related to a climate-induced change in the thermal state (from cold-to warm-based) of the glacier above the cave. The cessation of stalagmite growth between 133.1 ± 0.7 and 131.9 ± 0.6 kyr BP is most likely related to distinct drop in temperature associated with Heinrich stadial 11. The resumption of stalagmite growth at 131.9 ± 0.6 kyr BP is accompanied by an abrupt increase in temperature and precipitation as indicated by distinct shifts in the oxygen and carbon isotopic composition as well as in trace element concentrations. The mid-point of T-II is around 131.8 ± 0.6 kyr BP in the Schafsloch Cave record is significantly earlier compared to the age of 129.1 ± 0.1 kyr BP in the Sanbao Cave record from China. The different ages between both records can be best explained by the competing effects of insolation and glacial boundary forcing on seasonality and snow cover extent in Eurasia.
Resumo:
Community metabolism was investigated using a Lagrangian flow respirometry technique on 2 reef flats at Moorea (French Polynesia) during austral winter and Yonge Reef (Great Barrier Reef) during austral summer. The data were used to estimate related air-sea CO2 disequilibrium. A sine function did not satisfactorily model the diel light curves and overestimated the metabolic parameters. The ranges of community gross primary production and respiration (Pg and R; 9 to 15 g C m-2 d-1) were within the range previously reported for reef flats, and community net calcification (G; 19 to 25 g CaCO3 m-2 d-1) was higher than the 'standard' range. The molar ratio of organic to inorganic carbon uptake was 6:1 for both sites. The reef flat at Moorea displayed a higher rate of organic production and a lower rate of calcification compared to previous measurements carried out during austral summer. The approximate uncertainty of the daily metabolic parameters was estimated using a procedure based on a Monte Carlo simulation. The standard errors of Pg,R and Pg/R expressed as a percentage of the mean are lower than 3% but are comparatively larger for E, the excess production (6 to 78%). The daily air-sea CO2 flux (FCO2) was positive throughout the field experiments, indicating that the reef flats at Moorea and Yonge Reef released CO2 to the atmosphere at the time of measurement. FCO2 decreased as a function of increasing daily irradiance.