13 resultados para Amino compounds.
em Publishing Network for Geoscientific
Resumo:
Total organic carbon, amino compounds, and carbohydrates were measured in pore waters and sediments of Pliocene to Pleistocene age from Sites 723 and 724 (ODP Leg 117) to evaluate (1) relationships between organic matter in the sediment and in the pore water, (2) the imprint of lithological variations on the abundance and contribution of organic substances, (3) degradation of amino compounds and carbohydrates with time and/or depth, and (4) the dependence of the ammonia concentration in the pore water on the degradation of amino compounds in the sediment. Total organic carbon concentrations (TOC) of the investigated sediment samples range from 0.9% to 8.7%, and total nitrogen concentrations (TN) from 0.1% to 0.5%. Up to 4.9% of the TOC is contributed by hydrolyzable amino acids (THAA) which are present in amounts between 1.1 and 21.3 µmol/g dry sediment and decrease strongly downhole. Hydrolyzable carbohydrates (THCHO) were found in concentrations from 1.3 to 6.6 ?mol/g sediment constituting between 0.1% and 2.0% of the TOC. Differences between the distribution patterns of monomers in Sites 723 and 724 indicate higher terrigenous influence for Site 724 and, furthermore, enhanced input of organic matter that is relatively resistant to microbial degradation. Lithologically distinct facies close to the Pliocene/Pleistocene boundary yield different organic matter compositions. Laminated horizons seem to correspond with enhanced amounts of biogenic siliceous material and minor microbiological degradation. Total amounts of dissolved organic carbon (DOC) in pore waters vary between 11 and 131 mg/L. Concentrations of DOC as well as of dissolved amino compounds and carbohydrates appear to be related to microbial activity and/or associated redox zones and not so much to the abundance of organic matter in the sediments. Distributions of amino acids and monosaccharides in pore waters show a general enrichment in relatively stable components in comparison to those of the sediments. Nevertheless, the same trend appears between amino acids present in the sediments from Sites 723 and 724 as well as between amino acids in pore waters from these two sites, indicating a direct relation between the dissolved and the sedimentary organic fractions. Different ammonia concentrations in the pore waters of Sites 723 and 724 seem to be related to enhanced release of ammonia from degradation of amino compounds in Site 723.
Resumo:
Total organic carbon (TOC), dissolved organic carbon (DOC), total hydrolyzable amino acids (THAA), amino sugars (THAS), and carbohydrates (THCHO) were measured in sediments and interstitial waters from Site 681 (ODP Leg 112). TOC concentrations vary between 0.75% and 8.2% by weight of dry sediment and exhibit a general decrease with depth. DOC concentrations range from 6.1 to 49.5 mg/L, but do not correlate with TOC concentrations in the sediment. Amino compounds (AA and AS) and sugars account for 0.5% to 8% and 0.5% to 3% of TOC, respectively, while amino compounds make up between 2% and 27% of total nitrogen. Dissolved hydrolyzable amino acids (free and combined) and amino sugars were found in concentrations from 3.7 to 150 µM and from 0.1 to 3.7 µM, respectively, and together account for an average of 8.5% of DOC. Dissolved hydrolyzable carbohydrates are in the range of 6 to 49 µM. Amino acid spectra are dominated by glycine, alanine, leucine, and phenylalanine; nonproteinaceous amino acids (gamma-amino butyric acid, beta-alanine, and ornithine) are enriched in the deeper part of the section, gamma-amino butyric acid and beta-alanine are thought to be indicators of continued microbial degradation of TOC. Glycine, serine, glutamic acid, alanine, aspartic acid, and ornithine are the dominating amino compounds in the pore waters. Spectra of carbohydrates in sediments are dominated by glucose, galactose, and mannose, while dissolved sugars are dominated by glucose and fructose. In contrast to the lack of correlation between abundances of bulk TOC and DOC in corresponding interstitial waters, amino compounds and sugars do show some correlation between sediments and pore waters: A depth increase of aspartic acid, serine, glycine, and glutamic acid in the pore waters is reflected in a decrease in the sediment, while an enrichment in valine, iso-leucine, leucine, and phenylalanine in the sediment is mirrored by a decrease in the interstitial waters. The distribution of individual hexoseamines appears to be related to zones of bacterial decomposition of organic matter. Low glucoseamine to galactoseamine ratios coincide with zones of sulfate depletion in the interstitial waters.
Resumo:
A. Continental slope sediments off Spanish-Sahara and Senegal contain up to 4% organic carbon and up to 0.4% total nitrogen. The highest concentrations were found in sediments from water depths between 1000 and 2000 m. The regional and vertical distribution of organic matter differs significantly. Off Spanish-Sahara the organic matter content of sediment deposited during glacial times (Wuerm, Late Riss) is high whereas sediments deposited during interglacial times (Recent, Eem) are low in organic matter. Opposite distribution was found in sediments off Senegal. The sediments contain 30 to 130 ppm of fixed nitrogen. In most sediments this corresponds to 2-8 % of the total nitrogen. Only in sediments deposited during interglacial times off Spanish-Sahara up to 20 % of the total nitrogen is contained as inorganically bound nitrogen. Positive correlations of the fixed nitrogen concentrations to the amounts of clay, alumina, and potassium suggest that it is primarily fixed to illites. The amino acid nitrogen and hexosamine nitrogen account for 17 to 26 % and 1.3 to 2.4 %, respectively of the total nitrogen content of the sediments. The concentrations vary between 200 and 850 ppm amino acid nitrogen and 20 to 70 ppm hexosamine nitrogen, both parallel the fluctiations of organic matter in the sediment. Fulvic acids, humic acids, and the total organic matter of the sediments may be clearly differentiated from one another and their amino acid and hexosamine contents and their amino acid composition: a) Fulvic acids contain only half as much amino acids as humic acids b) The molar amino acid/hexosamine ratios of the fulvic acids are half those of the humic acids and the total organic matter of the sediment c) The amino acid spectra of fulvic acids are characterized by an enrichment of aspartic acid, alanine, and methionine sulfoxide and a depletion of glycine, valine, isoleucine, leucine, tyrosine, phenylalanine, lysine, and arginine compared to the spectra of the humic acids and those of the total organic matter fraction of the sediment. d) The amino acid spectra of the humic acids and those of the total organic matter fraction of the sediments are about the same with the exception that arginine is clearly enriched in the total organic matter. In general, as indicated by the amino compounds humic acids resemble closer the total organic matter composition than the low molecular fulvic acids do. This supports the general idea that during the course of diagenesis in reducing sediments organic matter stabilizes from a fulvic-like structure to humic-like structure and finally to kerogen. The decomposition rates of single aminio acids differ significantly from one another. Generally amino acids which are preferentially contained in humic acids and the total organic matter fraction show a smaller loss with time than those preferably well documented in case of the basic amino acids lysine and arginine which- although thermally unstable- are the most stable amino acids in the sediments. A favoured incorporation of these compounds into high molecular substances as well as into clay minerals may explain their relatively high "stability" in the sediment. The nitrogen loss from the sediments due to the activity of sulphate-reducing bacteria amounts to 20-40 % of the total organic nitrogen now present. At least 40 % of the organic nitrogen which is liberated by sulphate-reducing bacteria can be explained ny decomposition of amino acids alone. B. Deep-sea sediments from the Central Pacific The deep-seas sediments contain 1 to 2 orders of magnitude less organic matter than the continental slope sediments off NW Africa, i.e. 0.04 to 0.3 % organic carbon. The fixed nitrogen content of the deep-sea sediments ranges from 60 to 270 ppm or from 20 to 45 % of the total nitrogen content. While ammonia is the prevailing inorganic nitrogen compound in anoxic pore waters, nitrate predominates in the oxic environment of the deep-sea sediments. Near the sediment/water interface interstital nitrate concentrations of around 30 µg-at. N/l were recorded. These generally increase with sediment depth by 10 to 15 µg-at. NO3- N/l. This suggests the presence of free oxygen and the activity of nitrifying bacteria in the interstitial waters. The ammonia content of the interstitial water of the oxic deep-sea sediments ranges from 2 to 60 µg-at. N/l and thus is several orders of magnitude less than in anoxic sediments. In contrast to recorded nitrate gradients towards the sediments/water interface, there are no ammonia concentration gradients. However, ammonia concentrations appear to be characteristic for certain regional areas. It is suggested that this regional differentiation is caused by ion exchange reactions involving potassium and ammonium ions rather than by different decomposition rates of organic matter. C. C/N ratios All estimated C/N ratios of surface sediments vary between 3 and 9 in the deep-sea and the continental margin, respectively. Whereas the C/N ratios generally increase with depth in the sediment cores off NW Africa they decrease in the deep-sea cores. The lowest values of around 1.3 were found in the deeper sections of the deep-sea cores, the highest of around 10 in the sediments off NW Africa. The wide range of the C/N ratios as well as their opposite behaviour with increasing sediment depth in both the deep-sea and continental margin sediment cores, can be attributed mainly to the combination of the following three factors: 1. Inorganic and organic substances bound within the latticed of clay minerals tend to decrease the C/N ratios. 2. Organic matter not protected by absorption on the clay minerals tends to increase C/N ratios 3. Diagenetic alteration of organic matter by micro-organisms tends to increase C/N ratios through preferential loss of nitrogen The diagenetic changes of the microbially decomposable organic matter results in both oxic and anoxic environments in a preferential loss of nitrogen and hence in higher C/N ratios of the organic fraction. This holds true for most of the continental margin sediments off NW Africa which contain relatively high amounts of organic matter so that factors 2 and 3 predominate there. The relative low C/N ratios of the sediments deposited during interglacial times off Spanish-Sahara, which are low in organic carbon, show the increasing influence of factor 1 - the nitrogen-rich organic substances bound to clay minerals. In the deep-sea sediments from the Central Pacific this factor completely predominates so that the C/N rations of the sediments approach that of the substance absorbed to clay minerals with decreasing organic matter content. In the deeper core sections the unprotected organic matter has been completely destroyed so that the C/N ratios of the total sediments eventually fall into the same range as those of the pure clay mineral fraction.
Resumo:
Sediment and interstitial water from Sites 651 and 653 (ODP Leg 107) were investigated by organic geochemical methods to characterize labile organic compound classes (amino compounds and carbohydrates) and to evaluate their progressive diagenetic and thermal degradation in deep-sea sediments. Downhole distribution of dissolved organic carbon (DOC) appears related to redox zones associated with bacterial activity and of diagenetic recrystallization of biogenic tests and not so much to organic matter concentrations in ambient sediments. DOC ranges from 250 to 8300 µmol/L (3-100.1 ppm). Amino acids contribute 10%-0.3% of DOC; carbohydrates range from 78 to 5 µmol/L. Rate of degradation of amino acids by thermal effects and/or bacterial activity at both sites (significantly different in sedimentation rates: average 41 cm/1000 yr in the top 300 m at Site 651, average 3.9 cm/1000 yr in the Pliocene/Quaternary sequence at Site 653 to 220 mbsf) is more dependent on exposure time rather than on the depth within the sediment column. Variability in neutral, acidic, and basic amino acid fractions of total amino acids (with a range of 1.1-0.02 µmol/g sediment; up to 2.5% of organic carbon) varies with carbonate content and by differences in thermal stability of amino acids. Distribution patterns of monosaccharides are interpreted to result from differences in organic matter sources, sedimentation rates, and the degree of organic matter decomposition prior to and subsequent to burial. Total particulate carbohydrates range from 1.82 to 0.21 µmol/g sediment and contribute about 8% to the sedimentary organic matter. Investigation of trace metals in the interstitial waters did not show any correlation of either DOC, amino compounds, or carbohydrates.
Resumo:
Fifteen sediment samples were studied from five drill sites recovered by the Glomar Challenger on Legs I and IV in the Gulf of Mexico and western Atlantic. This study concentrated on compounds derived from biogenic precursors, namely: (1) hydrocarbons, (2) fatty acids, (3) pigments and (4) amino acids. Carbon isotope (dC13) data [values <(-26)?, relative to PDB], long-chain n-alkyl hydrocarbons (>>C27) with odd carbon numbered molecules dominating even carbon numbered species, and presence of perylene proved useful as possible indicators for terrigenous contributions to the organic matter in some samples. Apparently land-derived organic matter can be transported for distances over 1000 km into the ocean and their source still recognized. The study was primarily designed to investigate: (i) the sources of the organic matter present in the sediment, (ii) their stability with time of accumulation and (iii) the conditions necessary for in situ formation of new compounds.
Resumo:
Amino acid composition of bottom sediments on the northwestern continental slope of Africa is determined. Correlation similar to that found earlier in Caspian sediments between type of amino acid spectra of Atlantic sediments and distribution of reduced forms of sulfur in them is found. These correlations result from geochemical activity of benthic biocoenosis, which transforms sulfur compounds.
Resumo:
The physicochemical properties of the sea surface microlayer (SML), i.e. the boundary layer between the air and the sea, and its impact on air-sea exchange processes have been investigated for decades. However, a detailed description about these processes remains incomplete. In order to obtain a better chemical characterization of the SML, in a case study three pairs of SML and corresponding bulk water samples were taken in the southern Baltic Sea. The samples were analyzed for dissolved organic carbon and dissolved total nitrogen, as well as for several organic nitrogen containing compounds and carbohydrates, namely aliphatic amines, dissolved free amino acids, dissolved free monosaccharides, sugar alcohols, and monosaccharide anhydrates. Therefore, reasonable analytical procedures with respect to desalting and enrichment were established. All aliphatic amines and the majority of the investigated amino acids (11 out of 18) were found in the samples with average concentrations between 53 ng/l and 1574 ng/l. The concentrations of carbohydrates were slightly higher, averaging 2900 ng/l. Calculation of the enrichment factor (EF) between the sea surface microlayer and the bulk water showed that dissolved total nitrogen was more enriched (EF: 1.1 and 1.2) in the SML than dissolved organic carbon (EF: 1.0 and 1.1). The nitrogen containing organic compounds were generally found to be enriched in the SML (EF: 1.9-9.2), whereas dissolved carbohydrates were not enriched or even depleted (EF: 0.7-1.2). Although the investigated compounds contributed on average only 0.3% to the dissolved organic carbon and 0.4% to the total dissolved nitrogen fraction, these results underline the importance of single compound analysis to determine SML structure, function, and its potential for a transfer of compounds into the atmosphere.
Resumo:
Dissolved organic matter (DOM) was extracted with solid phase extraction (SPE) from 137 water samples from different climate zones and different depths along an Eastern Atlantic Ocean transect. The extracts were analyzed with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI). D14C analyses were performed on subsamples of the SPE-DOM. In addition, the amount of dissolved organic carbon was determined for all water and SPE-DOM samples as well as the yield of amino sugars for selected samples. Linear correlations were observed between the magnitudes of 43% of the FT-ICR mass peaks and the extract D14C values. Decreasing SPE-DOM D14C values went along with a shift in the molecular composition to higher average masses (m/z) and lower hydrogen/carbon (H/C) ratios. The correlation was used to model the SPE-DOM D14C distribution for all 137 samples. Based on single mass peaks a degradation index was developed to compare the degradation state of marine SPE-DOM samples analyzed with FT-ICR MS. A correlation between D14C, degradation index, DOC values and amino sugar yield supports that SPE-DOM analyzed with FT-ICR MS reflects trends of bulk DOM. A relative mass peak magnitude ratio was used to compare aged SPE-DOM and fresh SPE-DOM regarding single mass peaks. The magnitude ratios show a continuum of different reactivities for the single compounds. Only few of the compounds present in the FT-ICR mass spectra are expected to be highly degraded in the oldest water masses of the Pacific Ocean. All other compounds should persist partly thermohaline circulation. Prokaryotic (bacterial) production, transformation and accumulation of this very stable DOM occurs probably primarily in the upper ocean. This DOM is an important contribution to very old DOM, showing that production and degradation are dynamic processes.