804 resultados para "Mno"-cao-mgo-sio2-al2o3
Resumo:
Hypersthene-garnet-sillimanite-quartz enclaves were studied in orthopyroxene-plagioclase and orthopyroxene-clinopyroxene crystalline schists and gneisses from shear zones exposed in the Palenyi Island within the Early Proterozoic Belomorian Mobile Belt. Qualitative analysis of mineral assemblages indicates that these rocks were metamorphosed to the granulite facies (approximately 900°C and 10-11 kbar). Oxygen isotopic composition was determined in rock-forming minerals composing zones of the enclaves of various mineral and chemical composition. Closure temperatures of the isotopic systems obtained by methods of oxygen isotopic thermometry are close to values obtained with mineralogical geothermometers (garnet-orthopyroxene and garnet-biotite) and correspond to the high-temperature granulite facies (860-900°C). Identified systematic variations in d18O values were determined in the same minerals from zones of different mineral composition. Inasmuch as these zones are practically in contact with one another, these variations in d18O cannot be explained by primary isotopic heterogeneity of the protolith. Model calculations of the extent and trend of d18O variations in minerals suggest that fluid-rock interaction at various integral fluid/rock ratios in discrete zones was the only mechanism that could generate the zoning. This demonstrates that focused fluid flux could occur in lower crustal shear zones. Preservation of high-temperature isotopic equilibria of minerals testifies that the episode of fluid activity at the peak of metamorphism was very brief.
Resumo:
Numerous marine tephra layers cored at Sites 792 and 793 in the Izu-Bonin forearc region offer additional information about the timing and spatial characteristics of arc volcanism and the evolution of island arcs. Explosive volcanism along the Izu-Bonin Arc, with maxima just before rifting of the arc at ~40 and 5-0 Ma, produced black and white tephras of variable grain sizes and chemical compositions. Most of the tephras belong chemically to low-K and low-alkali tholeiitic rock series with a few tephra of the high-K and alkalic rock series. Most of the tephras (low-K series) were derived from the Izu-Bonin Arc, although a few were produced far to the west of the Izu-Bonin Arc (e.g., from the Ryukyu Arc). Black tephras may have come from nearby sources, such as Aogashima, Sumisu, and Torishima islands. The high-K series of tephras, within the sediments younger than 3 Ma, may reflect thickening of the island-arc crust.
Resumo:
Detailed comparison of mineralogy, and major and trace geochemistry are presented for the modern Lau Basin spreading centers, the Sites 834-839 lavas, the modern Tonga-Kermadec arc volcanics, the northern Tongan boninites, and the Lau Ridge volcanics. The data clearly confirm the variations from near normal mid-ocean-ridge basalt (N-MORB) chemistries (e.g., Site 834, Central Lau Spreading Center) to strongly arc-like (e.g., Site 839, Valu Fa), the latter closely comparable to the modern arc volcanoes. Sites 835 and 836 and the East Lau Spreading Center represent transitional chemistries. Bulk compositions range from andesitic to basaltic, but lavas from Sites 834 and 836 and the Central Lau Spreading Center extend toward more silica-undersaturated compositions. The Valu Fa and modern Tonga-Kermadec arc lavas, in contrast, are dominated by basaltic andesites. The phenocryst and groundmass mineralogies show the strong arc-like affinities of the Site 839 lavas, which are also characterized by the existence of very magnesian olivines (up to Fo90-92) and Cr-rich spinels in Units 3 and 6, and highly anorthitic plagioclases in Units 2 and 9. The regional patterns of mineralogical and geochemical variations are interpreted in terms of two competing processes affecting the inferred magma sources: (1) mantle depletion processes, caused by previous melt extractions linked to backarc magmatism, and (2) enrichment in large-ion-lithophile elements, caused by a subduction contribution. A general trend of increasing depletion is inferred both eastward across the Lau Basin toward the modern arc, and northward along the Tongan (and Kermadec) Arc. Numerical modeling suggests that multistage magma extraction can explain the low abundances (relative to N-MORB) of elements such as Nb, Ta, and Ti, known to be characteristic of island arc magmas. It is further suggested that a subduction jump following prolonged slab rollback could account for the initiation of the Lau Basin opening, plausibly allowing a later influx of new mantle, as required by the recognition of a two-stage opening of the Lau Basin.
Resumo:
Intensification of North Pacific Intermediate Water during the Younger Dryas and stadials of the last glacial episode has been advocated by Kennett and his colleagues based on studies of ventilation history in Santa Barbara Basin. Because Santa Barbara Basin is a semi-isolated marginal basin, this hypothesis requires testing in sequences on the upper continental margin facing the open-ocean of the Pacific. Ocean Drilling Program Site 1017 is located on the upper slope of southern California off Point Conception close to the entrance of Santa Barbara Basin, an ideal location to test the hypothesis of late Quaternary switching in intermediate waters. We examined chemical and mineral composition, sedimentary structures, and grain size of hemipelagic sediments representing the last 80 k.y. at this site to detect changes in behavior of intermediate waters. We describe distinct compositional and textual variations that appear to reflect changes in grain size in response to flow velocity fluctuations of bottom waters. Qualitative estimates of changes in degree of pyritization indicate better ventilation of bottom water during intervals of stronger bottom-water flow. Comparison between variations in the sediment parameters and the planktonic d18O record indicates intensified bottom-current activity during the Younger Dryas and stadials of marine isotope Stage 3. This result strongly supports the hypothesis of Kennett and his colleagues. Our investigation also suggests strong grain-size control on organic carbon content (and to less extent carbonate carbon content). This, in turn, suggests the possibility that organic carbon content of sediments, which is commonly used as an indicator of surface productivity, can be influenced by bottom currents.
Resumo:
Study of chemical composition of 26 samples collected at depths from 400 to 1400 m on vertex surfaces of the Southeast Indian Ridge, Mascarene Ridge, Madagascar Ridge, and Mozambique Ridge, as well as on the upper part of the Southeast Africa continental slope showed that the samples represent three groups of rocks: 1) low phosphate or phosphate-free ferromanganese rocks, 2) phosphate ferromanganese rocks 3) phosphorites and phosphatized limestones.
Resumo:
At all DSDP Leg 56 drilling sites, exotic pebbles occur commonly, throughout the cores. Chips of carbonate nodules occur only at Site 434 on the lower inner trench wall. Both exotic pebbles and carbonate nodule chips sometimes tend to be concentrated at particular levels of cores. Exotic pebbles are generally well rounded and consist of various rock types, such as dacite, andesite, basalt, tuff, gabbro, granodiorite, metaquartzite, biotite hornfels, lithic wacke, mudstone, etc., of which dacite occurs commonly at all the sites. Almost all pebbles at Site 436 and most at Sites 434 and 435 may have been rafted by ice. Some at the latter sites may have been derived by down-slope slumping. Carbonate nodules consist of microcrystalline dolomite, manganoan calcite, and siderite; CaCO3 content ranges from 22 to 65 per cent. They are also generally characterized by a high content of P2O5. The nodules are commonly rich in diatom remains, some of which indicate that the nodules are autochthonous. Some nodules contain abundant glass shards, with a modal refractive index of 1.499, almost identical to shards in the surrounding mud and ooze. These facts suggest that the carbonate nodules may have been formed diagenetically, in situ. This may throw light on problems of the formation of carbonate nodules in ancient "geosynclinal" sediments. It is also very important to point out that these carbonate nodules were formed within sediment deposited well below the CCD.
Resumo:
Samples of sediments and rocks collected at DSDP Sites 530 and 532 were analyzed for 44 major, minor, and trace elements for the following purposes: (1) to document the downhole variability in geochemistry within and between lithologic units; (2) to document trace-element enrichment, if any, in Cretaceous organic-carbon-rich black shales at Site 530; (3) to document trace-element enrichment, if any, in Neogene organic-carbon-rich sediments at Site 532; (4) to document trace-element enrichment, if any, in red claystone above basalt basement at Site 530 that might be attributed to hydrothermal activity or weathering of basalt. Results of the geochemical analyses showed that there are no significant enrichments of elements in the organic-carbon-rich sediments at Site 532, but a number of elements, notably Cd, Co, Cr, Cu, Mo, Ni, Pb, V, and Zn, are enriched in the Cretaceous black shales. These elements have different concentration gradients within the black-shale section, however, which suggests that there was differential mobility of trace elements during diagenesis of interbedded more-oxidized and less-oxidized sediments. There is little or no enrichment of elements from hydrothermal activity in the red claystone immediately overlying basalt basement at Site 530, but slight enrichments of several elements in the lowest meter of sediment may be related to subsea weathering of basalt
Resumo:
Thirty-five samples from the drill core of the three Leg 163 sites (Sites 988, 989, and 990) off the southeast coast of Greenland were analyzed for 27 major, minor, and trace elements by X-ray fluorescence (XRF) and for 25 trace elements, including 14 rare-earth elements (REEs), by an inductively coupled plasma source mass spectrometer (ICP/MS). Sr- and Nd-isotope data are reported for seven samples and oxygen-isotope data are reported for 19 plagioclase separates. In addition, a reconnaissance survey of the composition of the main mineral phases, plagioclase, pyroxene, and oxides was determined on an electron microprobe to provide the basic information required for petrogenetic modeling. Olivine pseudomorphs are present in many of the samples, but in no case was an olivine grain found that was fresh enough to give a reliable analysis. The chemical and isotopic data recorded here were determined to provide a comparison with the larger data sets acquired by the Edinburgh, Copenhagen, and Leicester laboratories from both Legs 152 and 163 drill cores. This will permit a detailed comparison of the North Atlantic flood basalt province as a whole with the better known Columbia River, Deccan, and Karoo continental flood basalt provinces, for which substantial chemical data sets are already available at Washington State University.
Resumo:
A felsic volcanic series (605-825 mbsf) overlain by upper Eocene shallow-water sediments (500-605 mbsf) and basalticandesitic sills that intruded into sediments of Holocene to Miocene age (0-500 mbsf) was drilled in the forearc region of the Lau Basin at a water depth of 4810 m. The volcanic sequence at Site 841 includes altered and mineralized calc-alkaline rhyolites and dacites, dacitic tuffs, lapilli tuffs, flow breccias, and welded tuffs. These rocks formed subaerially or in a very shallow-water environment suffering a subsidence of >5000 m since Eocene times. Calculations of gains and losses of the major components during alteration show most pronounced changes in the uppermost 70 m of the volcanic sequence. Here, Al, Fe, Mg, and K are enriched, whereas Si and Na are strongly depleted. Illite, vermiculite, chlorite, and hematite predominate in this part of the hole. Throughout the section, quartz, plagioclase, kaolinite, and calcite are present. Sulfide mineralization (up to 10 vol%) consisting mainly of disseminated pyrite (with minor pyrrhotite inclusions) and marcasite together with minor amounts of chalcopyrite is pervasive throughout. Locally, a few sulfide-bearing quartz-carbonate veins as well as Ti-amphibole replacement by rutile and then by pyrite were observed. Strong variations in the As content of sulfides (from 0 to 0.69 wt%) from the same depth interval and local enrichments of Co, Ni, and Cu in pyrite are interpreted to result from fluctuations in fluid composition. Calculations of oxygen and sulfur fugacities indicate that fO2 and fS2 were high at the top and lower at the bottom of the sequence. Sulfur isotope determinations on separated pyrite grains from two samples give d34S values of +6.4ë and +8.4ë, which are close to those reported from Kuroko and Okinawa Trough massive sulfide deposits and calc-alkaline volcanic rocks of the Japanese Ryukyu Island Arc. Calculated chlorite formation temperatures of 265°-290°C at the top of the sequence are consistent with minimum formation temperatures of fluid inclusions in secondary quartz, revealing a narrow range of 270°-297°C. Chlorite formation temperatures are constant downhole and do not exceed 300°C. The presence of marcasite and 4C-type pyrrhotite indicates a formation temperature of <= 250°C. At a later stage, illite was formed at the top of the volcanic series at temperatures well below 200°C.
Resumo:
The basement of Bougainville Guyot drilled at Site 831 consists of andesitic hyalobreccias derived from a submarine arc volcano. The volcanic sequence has been dated by K/Ar at approximately 37 Ma. The 121 m of andesitic hyalobreccias drilled in Hole 831B have been divided into five subunits of two types: one appears to be primary, and the other contains evidence of reworking and a subaerial clastic input. Variations are attributed to fluctuations in water depth. The distinctive hyalobreccias consist of andesitic blebs with chilled margins and peripheral fractures set in a chaotic greenish matrix that is mainly altered glass, with crystals similar to those in the blebs or clasts. Their formation is attributed to violent reaction of andesitic magma discharged into seawater, in perhaps the submarine equivalent of fire-fountaining. There was limited reworking by currents and debris flows on the flanks of the submarine volcano. The andesite shows no significant compositional variation in phenocryst phases throughout the drilled sequence and contains phenocrysts of plagioclase (An88-43), clinopyroxene (Ca44Mg46Fe10-Ca41Mg40Fe19), orthopyroxene (Ca4Mg79Fe17-Ca3Mg58Fe39), and titanomagnetite. There is a systematic change in volcanic composition with height in the section, from more mafic andesites at the base, to overlying more acid andesites, and strong evidence exists that magma mixing may have played a significant role in the genesis of these lavas. The andesites have affinities with the low-K arc tholeiite series. Trace element and isotopic systematics for these rocks indicate very minor involvement of a LILE- and 87Sr-enriched slab-derived fluid in their petrogenesis. This accords with the previous suggestion that Bougainville Guyot forms part of an Eocene proto-island arc developed along the southern side of the d'Entrecasteaux Zone, above a southward-dipping subduction zone.
Resumo:
The Ocean Drilling Program (ODP) Site 959 was drilled in the northern border of the Côte d'Ivoire-Ghana Ridge at a water depth of 2100 m. Pleistocene total thickness does not exceed 20 m. Winnowing processes resulted in a low accumulation rate and notable stratigraphic hiatuses. During the Late Pleistocene, bottom circulation was very active and controlled laminae deposition (contourites) which increased the concentration of glauconitic infillings of foraminifera, and of volcanic glass and blue-green grains more rarely, with one or several subordinate ferromagnesian silicates. Volcanic glass generally was X-ray amorphous and schematically classified as basic to intermediate (44-60% SiO2). Opal-A or opal-CT suggested the beginning of the palagonitisation process, and previous smectitic deposits may have been eroded mechanically. The blue-green grains presented two main types of mineralogic composition: (1) neoformed K, Fe-smectite associated with zeolite (like phillipsite) and unequal amounts of quartz and anorthite; (2) feldspathic grains dominated by albite but including quartz, volcanic glass and smectites as accessory components. They were more or less associated with the volcanic glass. On the basis of their chemical composition, the genetic relationship between the blue-green grains and the volcanic glass seemed to be obvious although some heterogeneous grains seemed to be primary ignimbrite and not the result of glass weathering. The most reasonable origin of these pyroclastic ejecta would be explosive events from the Cameroon Volcanic Ridge, especially from the Sao Thome and Principe Islands and Mount Cameroon area. This is supported both by grain geochemistry and the time of volcanic activity, i.e. Pleistocene. After westward wind transport (some 1200 km) and ash fall-out, the subsequent winnowing by bottom currents controlled the concentration of the volcanic grains previously disseminated inside the hemipelagic sediment. Palagonitisation, and especially phillipsite formation, may result from a relatively rapid reaction during burial diagenesis (<1 m.y.), in deep-sea deposits at relatively low sedimentation rate. However, it cannot be excluded that the weathering had begun widely on the Cameroon Ridge before the explosive event.
Resumo:
The distribution and composition of minerals in the silt and clay fraction of the fine-grained slope sediments were examined. Special interest was focused on diagenesis. The results are listed as follows. (1) Smectite, andesitic Plagioclase, quartz, and low-Mg calcite are the main mineral components of the sediment. Authigenic dolomite was observed in the weathering zones of serpentinites, together with aragonite, as well as in clayey silt. (2) The mineralogy and geochemistry of the sediments is analogous to that of the andesitic rocks of Costa Rica and Guatemala. (3) Unstable components like volcanic glass, amphiboles, and pyroxenes show increasing etching with depth. (4) The diagenetic alteration of opal-A skeletons from etching pits and replacement by opal-CT to replacement by chalcedony as a final stage corresponds to the typical opal diagenesis. (5) Clinoptilolite is the stable zeolite mineral according to mineral stability fields; its neoformation is well documented. (6) The early diagenesis of smectites is shown by an increase of crystallinity with depth. Only the smectites in the oldest sediments (Oligocene and early Eocene) contain nonexpanding illite layers.
Major oxides, trace elements and rare earth elements of selected basalt samples at DSDP Hole 83-504B
Resumo:
DSDP Hole 504B is the deepest section drilled into oceanic basement, penetrating through a 571.5-m lava pile and a 209-m transition zone of lavas and dikes into 295 m of a sheeted dike complex. To define the basement composition 194 samples of least altered basalts, representing all lithologic units, were analyzed for their major and 26 trace elements. As is evident from the alteration-sensitive indicators H2O+, CO2, S, K, Mn, Zn, Cu, and the iron oxidation ratio, all rocks recovered are chemically altered to some extent. Downhole variation in these parameters enables us to distinguish five depth-related alteration zones that closely correlate with changes in alteration mineralogy. Alteration in the uppermost basement portion is characterized by pronounced K-uptake, sulfur loss, and iron oxidation and clearly demonstrates low-temperature seawater interaction. A very spectacular type of alteration is confined to the depth range from 910 to 1059 m below seafloor (BSF). Rocks from this basement portion exhibit the lowest iron oxidation, the highest H2O+ contents, and a considerable enrichment in Mn, S, Zn, and Cu. At the top of this zone a stockwork-like sulfide mineralization occurs. The chemical data suggest that this basement portion was at one time within a hydrothermal upflow zone. The steep gradient in alteration chemistry above this zone and the ore precipitation are interpreted as the result of mixing of the upflowing hydrothermal fluids with lower-temperature solutions circulating in the lava pile. Despite the chemical alteration the primary composition and variation of the rocks can be reliably established. All data demonstrate that the pillow lavas and the dikes are remarkably uniform and display almost the same range of variation. A general characteristic of the rocks that classify as olivine tholeiites is their high MgO contents (up to 10.5 wt.%) and their low K abundances (-200 ppm). According to their mg-values, which range from 0.60 to 0.74, most basalts appear to have undergone some high-level crystal fractionation. Despite the overall similarity in composition, there are two major basalt groups that have significantly different abundances and ratios of incompatible elements at similar mg-values. The majority of the basalts from the pillow lava and dike sections are chemically closely related, and most probably represent differentiation products of a common parental magma. They are low in Na2O, TiO2, and P2O5, and very low in the more hygromagmaphile elements. Interdigitated with this basalt group is a very rarely occurring basalt that is higher in Na2O, TiO2, P2O5, much less depleted in hygromagmaphile elements, and similar to normal mid-ocean ridge basalt (MORB). The latter is restricted to Lithologic Units 5 and 36 of the pillow lava section and Lithologic Unit 83 of the dike section. The two basalt groups cannot be related by differentiation processes but have to be regarded as products of two different parental magmas. The compositional uniformity of the majority of the basalts suggests that the magma chamber beneath the Costa Rica Rift reached nearly steady-state conditions. However, the presence of lavas and dikes that crystallized from a different parental magma requires the existence of a separate conduit-magma chamber system for these melts. Occasionally mixing between the two magma types appears to have occurred. The chemical characteristics of the two magma types imply some heterogeneity in the mantle source underlying the Costa Rica Rift. The predominant magma type represents an extremely depleted source, whereas the rare magma type presumably originated from regions of less depleted mantle material (relict or affected by metasomatism).
Resumo:
REE abundances in gabbros and peridotites from Site 334 of DSDP Leg 37 show that these rocks are cumulates produced by fractional crystallization of a primitive oceanic tholeiite magma. They may be part of a layered oceanic complex. The REE distributions in the residual liquids left after such a fractionation are similar to those of incompatible element-depleted oceanic tholeiites. The REE data indicate that the basalts which overlie the gabbro-peridotite complex, are not genetically related to plutonic rocks.
Resumo:
During the analysis of "glaucony" recovered during Leg 66, off Mexico, we reviewed the data on previously studied glaucony layers in active margin areas. We found the depth of Leg 66 glaucony sediments to be significantly greater than conventionally assumed appropriate to their genesis (100-500 m). Accordingly, we hypothesize their occurrence at unusual depth to be due to (1) transport of shallow sediments and redeposition at greater depths, (2) margin subsidence, or (3) genesis at greater depth than is generally assumed. For the area off Mexico, we reject (1). (2) has already been verified in Japan and is possible as an explanation for the present phenomenon without excluding (3), which we investigate in this chapter.