120 resultados para Fishery technology -- Western Mediterranian -- 1977-1996
Resumo:
Elemental composition, functional groups, and molecular mass distribution were determined in humic acids from the Western Pacific abyssal and coastal bottom sediments. Humic acid structure was studied by oxidative degradation with alkaline nitrobenzene and potassium permanganate, p-coumaric, guaiacilic, and syringilic structural units typical for lignin of terrestrial plants were identified in humic acids by chromatographic analysis of oxidation products. Polysubstituted and polycondensed aromatic systems with minor proportion of aliphatic structures were basic structural units of humic acids in abyssal sediments.
Resumo:
The fluffy layer was sampled repeatedly during nine expeditions between October 1996 and December 1998 at four stations situated along a S-N-transect from the Oder Estuary to the Arkona Basin. Geochemical and mineralogical analyses of the fluff show regional differences (trends) in composition, attributed to provenance and to hydrographical conditions along their transport pathways. Temporal variability is very high at the shallow water station of the estuary, and decreases towards the deeper stations in the north. In the shallow water area, intensive resuspension of the fluff due to wind-driven waves and currents leads to an average residence time of only one to two days. Near-bottom lateral transport of the fluff is the main process that transfers the fine grained material, containing both nutrients and contaminants, from the coastal zone into the deeper basins of the Baltic Sea. Seasonal effects (e.g. biogenic production in relation to trace metal variation) are observed at the Tromper Wiek station, where the residence time of the fluffy material is in the scale of seasons. Thus, the fluffy layer offers suitable material for environmental monitoring programs.
Resumo:
Paleotemperature estimates calculated by the SIMMAX Modern Analog Technique are presented for two gravity cores from the Rio Grande Rise, one from the Brazil Slope, and one from the Ceara Rise. The estimates are based on comparisons between modern and fossil planktonic foraminiferal assemblages and were carried out on samples from Quaternary sediments. Estimated warm-season temperatures from the Rio Grande Rise (at approx. 30° S) range from around 19°C to 24°C, with some coincidence of warm peaks with interglacial stages. The temperature estimates (also warm-season) from the more tropical Brazil Slope (at approx. 8° S) and Ceara Rise (at approx. 4° N) cores are more stable, remaining between 26°C and 28°C throughout most of their lengths. This fairly stable situation in the tropical western Atlantic is interrupted in oxygen isotope stage 6 by a significant drop of 2-3°C in both of these cores. Temperature estimates from the uppermost samples in all cores compare very well to the modern-day measured values. Affinities of some foraminiferal species for warmer or cooler surface temperatures are identified within the temperature range of the examined samples based on their abundance values. Especially notable among the warmer species are, Globorotalia menardii, Globigerinita glutinata, Globigerinoides ruber, and Globigerinoides sacculifer. Species indicative of cooler surface temperatures include Globorotalia inflata, Globigerina bulloides, Neogloboquadrina pachyderma, and Globigerina falconensis. A cluster analysis was carried out to assist in understanding the degree of variation which occurs in the foraminiferal assemblages, and how temperature differences influence the faunal compositions of the samples. It is demonstrated that fairly similar samples may have unexpectedly different estimated temperatures due to small differences in key species and, conversely, quite different assemblages can result in similar or identical temperature estimates which confirms that other parameters than just temperature affect faunal content.
Resumo:
A uniform chronology for foraminifera-based sea surface temperature records has been established in more than 120 sediment cores obtained from the equatorial and eastern Atlantic up to the Arctic Ocean. The chronostratigraphy of the last 30,000 years is mainly based on published d18O records and 14C ages from accelerator mass spectrometry, converted into calendar-year ages. The high-precision age control provides the database necessary for the uniform reconstruction of the climate interval of the Last Glacial Maximum within the GLAMAP-2000 project.
Resumo:
Next-generation sequencing (NGS) technologies have enabled us to determine phytoplankton community compositions at high resolution. However, few studies have adopted this approach to assess the responses of natural phytoplankton communities to environmental change. Here, we report the impact of different CO2 levels on spring diatoms in the Oyashio region of the western North Pacific as estimated by NGS of the diatom-specific rbcL gene (DNA), which encodes the large subunit of RubisCO. We also examined the abundance and composition of rbcL transcripts (cDNA) in diatoms to assess their physiological responses to changing CO2 levels. A short-term (3-day) incubation experiment was carried out on-deck using surface Oyashio waters under different pCO2 levels (180, 350, 750, and 1000 µatm) in May 2011. During the incubation, the transcript abundance of the diatom-specific rbcL gene decreased with an increase in seawater pCO2 levels. These results suggest that CO2 fixation capacity of diatoms decreased rapidly under elevated CO2 levels. In the high CO2 treatments (750 and 1000 µatm), diversity of diatom-specific rbcL gene and its transcripts decreased relative to the control treatment (350µatm), as well as contributions of Chaetocerataceae, Thalassiosiraceae, and Fragilariaceae to the total population, but the contributions of Bacillariaceae increased. In the low CO2 treatment, contributions of Bacillariaceae also increased together with other eukaryotes. These suggest that changes in CO2 levels can alter the community composition of spring diatoms in the Oyashio region. Overall, the NGS technology provided us a deeper understanding of the response of diatoms to changes in CO2 levels in terms of their community composition, diversity, and photosynthetic physiology.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Late Quaternary sediment yields from the Isfjorden drainage area (7327 km**2), a high arctic region on Svalbard characterized by an alpine landscape, have been reconstructed by using seismic stratigraphy supported by sediment core analysis. The sediments that accumulated in the fjord during and since deglaciation can be divided into three stratigraphic units. The volumes of these units were determined and converted into sediment yield rates averaged over the drainage basin. During deglaciation, 13 to 10 ka, the sediment yield was ~860 tons(t)/km**2/yr. In the early Holocene it decreased to 190 t/km**2/yr, and then increased to 390t/km**2/yr during the late Holocene Little Ice Age. When normalized to the approximate glacierized area, these rates correspond to a sediment yield of ~800 t/km**2/yr . Sediment yield from non-glacierized parts of the drainage is estimated to be 35 t/km**2/yr. At times when ice advanced to the shelf edge, sediment was scoured from the fjord and deposited on the outer shelf and in a well-defined deep sea fan. Between 200 ka and 13 ka, 328 km**3 of sediment accumulated here, corresponding to a mean sediment yield rate of 335 t/km**2/yr. This is broadly consistent with calculations based on the above rates of sediment yield in glacierized and non-glacierized areas, and on estimates, based on glacial geology, of the temporal variation in degree of glacierization over the past 200 kyr. These figures indicate that much of the glacigenic sediment on the shelf and slope was eroded from the uplands of Svalbard by small glaciers during interstadials and interglacials. The sediments were temporarily stored in the fjord prior to redeposition on the shelf and slope during ice sheet advance. Taken into consideration, such redisposition of pre-eroded material will reduce estimates of primary ice sheet erosion rate.
Resumo:
We compare a compilation of 220 sediment core d13C data from the glacial Atlantic Ocean with three-dimensional ocean circulation simulations including a marine carbon cycle model. The carbon cycle model employs circulation fields which were derived from previous climate simulations. All sediment data have been thoroughly quality controlled, focusing on epibenthic foraminiferal species (such as Cibicidoides wuellerstorfi or Planulina ariminensis) to improve the comparability of model and sediment core carbon isotopes. The model captures the general d13C pattern indicated by present-day water column data and Late Holocene sediment cores but underestimates intermediate and deep water values in the South Atlantic. The best agreement with glacial reconstructions is obtained for a model scenario with an altered freshwater balance in the Southern Ocean that mimics enhanced northward sea ice export and melting away from the zone of sea ice production. This results in a shoaled and weakened North Atlantic Deep Water flow and intensified Antarctic Bottom Water export, hence confirming previous reconstructions from paleoproxy records. Moreover, the modeled abyssal ocean is very cold and very saline, which is in line with other proxy data evidence.
Resumo:
This synthesis dataset contains records of freshwater peat and lake sediments from continental shelves and coastal areas. Information included is site location (when available), thickness and description of terrestrial sediments as well as underlying and overlying sediments, dates (when available), and references.
Resumo:
Planktonic foraminiferal census counts are used to construct high-resolution sea surface temperature (SST) and subsurface (thermocline) temperature records at a core site in the Tobago Basin, Lesser Antilles. The record is used to document climatic variability at this tropical site in comparison to middle- and high-latitude sites and to test current concepts of cross-equatorial heat transports as a major player in interhemispheric climate variability. Temperatures are estimated using transfer function and modern analog techniques. Glacial - maximum cooling of 2.5°-3°C is indicated; maximum cooling by 4°C is inferred for isotope stage 3. The SST record displays millennial-scale variability with temperature jumps of up to 3°C and closely tracks the structure of ice-core Dansgaard/Oeschger cycles. SST variations in part of the record run opposite to the SST evolution at high northern latitude sites, pointing to thermohaline circulation and marine heat transport as an important factor driving SST in the tropical and high-latitude Atlantic, both on orbital and suborbital timescales.
Resumo:
In contrast to the wide range of studies carried out in temperate and high-latitude oceanic regions, only a few studies have focused on recent and Holocene organic-walled dinoflagellate cyst assemblages from the tropics. This information is, however, essential for fully understanding the ability of species to adapt to different oceanographic regimes, and ultimately their potential application to local and regional palaeoenvironmental and palaeoceanographic reconstructions. Surface sediment samples of the western equatorial Atlantic Ocean north of Brazil, an area greatly influenced by Amazon River discharge waters, were therefore analysed in detail for their organic-walled dinoflagellate cyst content. A diverse association of 43 taxa was identified, and large differences in cyst distribution were observed. The cyst thanatocoenosis in bottom sediments reflects the seasonal advection of Amazon River discharge water through the Guyana Current and the North Equatorial Countercurrent well into the North Atlantic. To establish potential links between cyst distribution and the environmental conditions of the upper water column, distribution patterns were compared with mean temperature, salinity, density and stratification gradients within the upper water column (0-100 m) over different times of the year, using correspondence analysis and canonical correspondence analysis. The analyses show that differences in these parameters only play a subordinate role in determining species distribution. Instead, nutrient availability, or related factors, dominates the distribution pattern. The only possible indicators of slightly reduced salinities are Trinovantedinium applanatum and Lingulodinium machaerophorum. Four assemblage groups of cyst taxa with similar environmental affinities related to specific water masses/currents can be distinguished and have potential for palaeoenvironmental reconstruction.