658 resultados para Thesleff, Holger


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analogous to West- and North Africa, East Africa experienced more humid conditions between approximately 12 to 5 kyr BP, relative to today. While timing and extension of wet phases in the North and West are well constrained, this is not the case for the East African Humid Period. Here we present a record of benthic foraminiferal assemblages and sediment elemental compositions of a sediment core from the East African continental slope, in order to provide insight into the regional shallow Indian Ocean paleoceanography and East African climate history of the last 40 kyr. During glacial times, the dominance of a benthic foraminiferal assemblage characterized by Bulimina aculeata, suggests enhanced surface productivity and sustained flux of organic carbon to the sea floor. During Heinrich Stadial 1 (H1), the Nuttallides rugosus Assemblage indicates oligotrophic bottom water conditions and therefore implies a stronger flow of southern-sourced AAIW to the study site. During the East African Humid Period, the Saidovina karreriana Assemblage in combination with sedimentary C/N and Fe/Ca ratios suggest higher river runoff to the Indian Ocean, and hence more humid conditions in East Africa. Between 8.5 and 8.1 kyr, contemporaneous to the globally documented 8.2 kyr Event, a severe reduction in river deposits implies more arid conditions on the continent. Comparison of our marine data with terrestrial studies suggests that additional moisture from the Atlantic Ocean, delivered by an eastward migration of the Congo Air Boundary during that time period, could have contributed to East African rainfall. Since approximately 9 kyr, the gaining influence of the Millettiana millettii Assemblage indicates a redevelopment of the East African fringe reefs.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The majority of global ocean production and total export production is attributed to oligotrophic oceanic regions due to their vast regional expanse. However, energy transfers, food-web structures and trophic relationships in these areas remain largely unknown. Regional and vertical inter- and intra-specific differences in trophic interactions and dietary preferences of calanoid copepods were investigated in four different regions in the open eastern Atlantic Ocean (38°N to 21°S) in October/November 2012 using a combination of fatty acid (FA) and stable isotope (SI) analyses. Mean carnivory indices (CI) based on FA trophic markers generally agreed with trophic positions (TP) derived from d15N analysis. Most copepods were classified as omnivorous (CI ~0.5, TP 1.8 to ~2.5) or carnivorous (CI >=0.7, TP >=2.9). Herbivorous copepods showed typical CIs of <=0.3. Geographical differences in d15N values of epi- (200-0 m) to mesopelagic (1000-200 m) copepods reflected corresponding spatial differences in baseline d15N of particulate organic matter from the upper 100 m. In contrast, species restricted to lower meso- and bathypelagic (2000-1000 m) layers did not show this regional trend. FA compositions were species-specific without distinct intra-specific vertical or spatial variations. Differences were only observed in the southernmost region influenced by the highly productive Benguela Current. Apparently, food availability and dietary composition were widely homogeneous throughout the oligotrophic oceanic regions of the tropical and subtropical Atlantic. Four major species clusters were identified by principal component analysis based on FA compositions. Vertically migrating species clustered with epi- to mesopelagic, non-migrating species, of which only Neocalanus gracilis was moderately enriched in lipids with 16% of dry mass (DM) and stored wax esters (WE) with 37% of total lipid (TL). All other species of this cluster had low lipid contents (< 10% DM) without WE. Of these, the tropical epipelagic Undinula vulgaris showed highest portions of bacterial markers. Rhincalanus cornutus, R. nasutus and Calanoides carinatus formed three separate clusters with species-specific lipid profiles, high lipid contents (>=41% DM), mainly accumulated as WE (>=79% TL). C. carinatus and R. nasutus were primarily herbivorous with almost no bacterial input. Despite deviating feeding strategies, R. nasutus clustered with deep-dwelling, carnivorous species, which had high amounts of lipids (>=37% DM) and WE (>=54% TL). Tropical and subtropical calanoid copepods exhibited a wide variety of life strategies, characterized by specialized feeding. This allows them, together with vertical habitat partitioning, to maintain high abundance and diversity in tropical oligotrophic open oceans, where they play an essential role in the energy flux and carbon cycling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Indian Ocean is an important component of the global thermohaline circulation system, as its western boundary currents feed the Agulhas Current, an integral part of the Atlantic meridional overturning circulation. However, Indian Ocean intermediate to deep-water variability on glacial-interglacial timescales is still a matter of debate. Here we provide stable carbon and oxygen isotopes and sediment elemental compositions of a sediment core from the edge of the Somali Basin. We demonstrate that throughout the past 600 kyr the intermediate western Indian Ocean was primarily bathed by Southern Ocean sourced Upper Circumpolar Deep Water (UCDW). This Southern Ocean sourced water mass enters the Somali Basin via the Amirante Passage or the Mozambique Channel and represents a downstream equivalent of South Atlantic UCDW. We cannot clearly account for the shortterm passage of Red Sea Water (RSW) at 1500 m water depth along the African continental margin, as previously suggested, on glacial-interglacial timescales.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The northward extent of the influence of the W African monsoon during humid periods of interglacials is subject to investigations highlighting feedback mechanisms, such as vegetation. To detect this regional variation and the climate system acting farther to the north will be the aim of this paper focussing on the Holocene. We present two very high-resolution Holocene sediment records off NW Africa located at 31°N and 27°N. The well-known mid-Holocene climate change from the "African Humid Period" to present arid conditions is well reflected by the terrigenous input in the southern core. In contrast, in the northern core spectral and wavelet analyses indicate a periodic oscillation of about 900 years of the terrigenous input throughout the last 9000 years B.P. We conclude that the W African monsoonal influence characterized by the abrupt climatic change at 5000 years B.P. can be separated from the influence of the N Atlantic climate system reflected by a periodic oscillation throughout the Holocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copepods were sampled at two sampling sites off the island of São Vicente, Cape Verde Archipelago, in spring (March/April) and early summer (May/June) of 2010. The two sampling sites were located in Mindelo Bay (16.90N, 25.01W; bottom depth 22 m) and around 8 km off the town of São Pedro (16.77N, 25.12W; bottom depth 800 m). Samples were collected on board the local fishing vessel 'Sinagoga' using a WP-2 net (Hydrobios, 0.26 m**2 mouth opening, 200 µm mesh size). The net was either applied as a driftnet, drifting for 10 min in 22 to 0 m depth below the surface, or it was towed vertically with a towing speed of 0.5 m/s**1. For stratified sampling, the net was deployed in repetitive hauls from 560 to 210 m, from 210 to 80 m, and from 80 to 0 m in March/April and from 600 to 300 m, 300 to 100 m, and 100 to 0 m in May/June. Additional depth-integrated hauls were conducted from 600-0 m or 500-0 m during both field campaigns. Respiration rates of epi- and mesopelagic calanoid copepods were measured in the land-based laboratory at the Instituto Nacional de Desenvolvimento das Pescas (INDP) in Mindelo. Oxygen consumption was measured non-invasively by optode respirometry at three different ambient temperatures (13, 18, and 23°C) with a 10-channel oxygen respirometer (Oxy-10 Mini, PreSens Precision Sensing GmbH, Regensburg, Germany). All experiments were run in darkness in temperature-controlled incubators (LMS Cooled Incubator Series 1A, Model 280) equipped with water baths to ensure constant temperatures throughout the experiments, tolerating a variation of ±1°C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hide Intense debate persists about the climatic mechanisms governing hydrologic changes in tropical and subtropical southeast Africa since the Last Glacial Maximum, about 20,000 years ago. In particular, the relative importance of atmospheric and oceanic processes is not firmly established. Southward shifts of the intertropical convergence zone (ITCZ) driven by high-latitude climate changes have been suggested as a primary forcing, whereas other studies infer a predominant influence of Indian Ocean sea surface temperatures on regional rainfall changes. To address this question, a continuous record representing an integrated signal of regional climate variability is required, but has until now been missing. Here we show that remote atmospheric forcing by cold events in the northern high latitudes appears to have been the main driver of hydro-climatology in southeast Africa during rapid climate changes over the past 17,000 years. Our results are based on a reconstruction of precipitation and river discharge changes, as recorded in a marine sediment core off the mouth of the Zambezi River, near the southern boundary of the modern seasonal ITCZ migration. Indian Ocean sea surface temperatures did not exert a primary control over southeast African hydrologic variability. Instead, phases of high precipitation and terrestrial discharge occurred when the ITCZ was forced southwards during Northern Hemisphere cold events, such as Heinrich stadial 1 (around 16,000 years ago) and the Younger Dryas (around 12,000 years ago), or when local summer insolation was high in the late Holocene, i.e., during the last 4,000 years.

Relevância:

10.00% 10.00%

Publicador: