142 resultados para Geochemical processes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative characteristics for rates of diagenetic processes in the upper (0-30 cm) layer of sedimentary deposits in the area of the Spitsbergen (Svalbard) Archipelago (78°-80°N) were obtained by lithologo-geochemical, radioisotope (35S, 14C), and stable isotope (d34S, d13C) studies. It was proved that rates of diagenetic processes in polar deposits at 123-395 m depth affected by the East Spitsbergen ''warm'' current are mostly determined by bioproductivity and are commensurate with rates of processes in shelf deposits of temperate latitudes. High contents of migratory methane (up to 263 ml/dm**3) and isotopically-light organic carbon (Corg, d13C = -30 per mil PDB) were found in the 1 m layer of shelf deposits (at 123 m sea depth) with low bacterial in situ production of methane. It was shown that methane is not utilized in the deposits by the methanotrophic bacterial community and it may be supplied to the water mass and, probably, to the atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to investigate a possible connection between tropical northeast (NE) Atlantic primary productivity, Atlantic meridional overturning circulation (AMOC), and drought in the Sahel region during Heinrich Stadial 1 (HS1), we used dinoflagellate cyst (dinocyst) assemblages, Mg/Ca based reconstructed temperatures, stable carbon isotopes (d13C) and geochemical parameters of a marine sediment core (GeoB 9508-5) from the continental slope offshore Senegal. Our results show a two-phase productivity pattern within HS1 that progressed from an interval of low marine productivity between ~ 19 and 16 kyr BP to a phase with an abrupt and large productivity increase from ~ 16 to 15 kyr BP. The second phase is characterized by distinct heavy planktonic d13C values and high concentrations of heterotrophic dinocysts in addition to a significant cooling signal based on reconstructions of past sea surface temperatures (SST). We conclude that productivity variations within HS1 can be attributed to a substantial shift of West African atmospheric processes. Taken together our results indicate a significant intensification of the North East (NE) trade winds over West Africa leading to more intense upwelling during the last millennium of HS1 between ~ 16 and 15 kyr BP, thus leaving a strong imprint on the dinocyst assemblages and sea surface conditions. Therefore, the two-phase productivity pattern indicates a complex hydrographic setting suggesting that HS1 cannot be regarded as uniform as previously thought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mineralogy and stable (O and C) and Sr isotopic compositions of low-temperature alteration phases were determined in Hole 735B gabbroic rocks in order to understand the processes of low-temperature alteration in this uplifted block of lower oceanic crust. Phyllosilicates include smectite (saponite, Mg montmorillonite, and nontronite), chlorite/smectite, chlorite, talc, and serpentine. Other phases include prehnite, albite, K-feldspar, analcite, natrolite, thompsonite, pyrite, and titanite. The low-grade mineral assemblages mainly represent zeolite facies and lower-temperature "seafloor weathering" processes. Phyllosilicates formed over a range of temperatures but may also reflect variable reaction progress. Alteration temperatures were probably somewhat greater below 1300 meters below seafloor. Mineralogy and isotopic data indicate that conditions were mostly reducing and that seawater solutions were rock dominated. Carbonates formed late from cold and generally oxidizing seawater solution, however, as seawater penetrated downward as the result of fracturing and faulting in the uppermost portion of the uplifted crustal block.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several studies indicate that the 2011 Tohoku-Oki earthquake (Mw 9.0) off the Pacific coast of Japan has induced slip to the trench and triggered landslides in the Japan Trench. In order to better understand these processes, detailed mapping and shallow-coring landslides at the trench as well as Integrated Ocean Drilling Program (IODP) deep drilling to recover the plate boundary décollement (Japan Trench Fast Earthquake Drilling Project, JFAST) have been conducted. In this study we report sediment core data from the rapid response R/V SONNE cruise (SO219A) to the Japan Trench, evidencing a Mass Transport Deposit (MTD) in the uppermost section later drilled at this JFAST-site during IODP Expedition 343. A 8.7 m long gravity core (GeoB16423-1) recovered from ~7,000 m water depth reveals a 8 m sequence of semi-consolidated mud clast breccias embedded in a distorted chaotic sediment matrix. The MTD is covered by a thin veneer of 50 cm hemipelagic, bioturbated diatomaceous mud. This stratigraphic boundary can be clearly distinguished by using physical properties data from Multi Sensor Core Logging and from fall-cone penetrometer shear strength measurements. The geochemical analysis of the pore-water shows undisturbed linear profiles measured from the seafloor downcore across the stratigraphic contact between overlying younger background-sediment and MTD below. This indicates that the investigated section has not been affected by a recent sediment destabilization in the course of the giant Tohoku-Oki earthquake event. Instead, we report an older landslide which occurred between 700 and 10,000 years ago, implying that submarine mass movements are dominant processes along the Japan Trench. However, they occur on local sites and not during each megathrust earthquake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An understanding of sediment redox conditions across the Paleocene-Eocene thermal maximum (PETM) (?55 Ma) is essential for evaluating changes in processes that control deep-sea oxygenation, as well as identifying the mechanisms responsible for driving the benthic foraminifera extinction. Sites cored on the flanks of Walvis Ridge (Ocean Drilling Program Leg 208, Sites 1262, 1266, and 1263) allow us to examine changes in bottom and pore water redox conditions across a ~2 km depth transect of deep-sea sediments of PETM age recovered from the South Atlantic. Here we present measurements of the concentrations of redox-sensitive trace metals manganese (Mn) and uranium (U) in bulk sediment as proxies for redox chemistry at the sediment-water interface and below. All three Walvis Ridge sites exhibit bulk Mn enrichment factors (EF) ranging between 4 and 12 prior to the warming, values at crustal averages (Mn EF = 1) during the warming interval, and a return to pre-event values during the recovery period. U enrichment factors across the PETM remains at crustal averages (U EF = 1) at Site 1262 (deep) and Site 1266 (intermediate depth). U enrichment factors at Site 1263 (shallow) peaked at 5 immediately prior to the PETM and dropped to values near crustal averages during and after the event. All sites were lower in dissolved oxygen content during the PETM. Before and after the PETM, the deep and intermediate sites were oxygenated, while the shallow site was suboxic. Our geochemical results indicate that oxygen concentrations did indeed drop during the PETM but not sufficiently to cause massive extinction of benthic foraminifera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the Cretaceous, widespread black shale deposition occurred during a series of Oceanic Anoxic Events (OAEs). Multiple processes are known to control the deposition of marine black shales, including changes in primary productivity, organic matter preservation, and dilution. OAEs offer an opportunity to evaluate the relative roles of these forcing factors. The youngest of these events-the Coniacian to Santonian OAE 3-resulted in a prolonged organic carbon burial event in shallow and restricted marine environments including the Western Interior Seaway. New high-resolution isotope, organic, and trace metal records from the latest Turonian to early Santonian Niobrara Formation are used to characterize the amount and composition of organic matter preserved, as well as the geochemical conditions under which it accumulated. Redox sensitive metals (Mo, Mn, and Re) indicate a gradual drawdown of oxygen leading into the abrupt onset of organic carbon-rich (up to 8%) deposition. High Hydrogen Indices (HI) and organic carbon to total nitrogen ratios (C:N) demonstrate that the elemental composition of preserved marine organic matter is distinct under different redox conditions. Local changes in d13C indicate that redox-controlled early diagenesis can also significantly alter d13Corg records. These results demonstrate that the development of anoxia is of primary importance in triggering the prolonged carbon burial in the Niobrara Formation. Sea level reconstructions, d18O results, and Mo/total organic carbon ratios suggest that stratification and enhanced bottom water restriction caused the drawdown of bottom water oxygen. Increased nutrients from benthic regeneration and/or continental runoff may have sustained primary productivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of microbiological, biogeochemical and isotope geochemical studies in the Kara Sea are described. Samples for these studies were obtained during Cruise 54 of R/V Akademik Mstislav Keldysh in September 2007. The studied area covered the northern, central, and southwestern parts of the Kara Sea and the Obskaya Guba (Ob River estuary). Quantitative characteristics of total bacterial population and activity of microbial processes in the water column and bottom sediments were obtained. Total abundance of bacterioplankton (BP) varied from 250000 cells/ml in the northern Kara Sea to 3000000 cells/ml in the Obskaya Guba. BP abundance depended on concentration of suspensded matter. Net BP production was minimal in the central Kara Sea (up to 0.15-0.2 µg C/l/day) and maximal (0.5-0.75 µg C/l/day) in the Obskaya Guba. Organic material at the majority of stations at the Ob transect predominantly contained light carbon isotopes (-28.0 to -30.18 per mil) of terrigenous origin. Methane concentration in the surface water layer varied from 0.18 to 2.0 µl CH4/l, and methane oxidation rate varied from 0.1 to 100 nl CH4/l/day. Methane concentration in the upper sediment layer varied from 30 to 300 µl CH4/dm**3; rate of methane formation was varied from 44 to 500 nl CH4/dm**3/day and rate of methane oxidation - from 30 to 2000 nl CH4/dm**3/day. Rate of sulfate reduction varied from 4 to 184 µg S/dm**3/day.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The western flank of the Great Bahama Bank, drilled during ODP Leg 166 at seven sites, represents a prograding carbonate sequence from late Oligocene to Holocene [Eberli et al., Proc. ODP Init. Reports 166 (1997)]. The signatures of the detrital input and of diagenetic alteration are evident in clay enriched intervals from the most distal Sites 1006 and 1007 in the Straits of Florida. Mineralogical and chemical investigations (XRD, TEM, SEM, ICP-MS) run on bulk rocks and on the clay fractions enable the origin and evolution of silicate parageneses to be characterized. Plio-Pleistocene silt and clay interbeds contain detrital clay assemblages comprising chlorite, illite, interstratified illite smectite, smectite, kaolinite and palygorskite. The greater smectite input within late Pliocene units than in Pleistocene oozes may relate either varying source areas or change in paleoclimatic conditions and weathering intensity. The clay intervals from Miocene-upper Oligocene wackestone sections are fairly different, with prevalent smectite in the fine fraction, whose high crystallinity and Mg contents that point towards an authigenic origin. The lower Miocene section, below 1104 mbsf, at depths where compaction features are well developed, is particularly characterized by abundant authigenic Na-K-clinoptilolite filling foraminifer tests. The authigenic smectite and clinoptilolite paragenesis is recorded by the chemical trends, both of the sediment and the interstitial fluid. This diagenetic evolution implies Si- and Mg rich fluids circulating in deeper and older sequences. For lack of any local volcaniclastic input, the genesis of zeolite and the terms of water rock interaction are discussed. The location of the diagenetic front correlates with that of the seismic sequence boundary P2 dated as 23.2 Ma. This correspondence may allow the chronostratigraphic significance of some specific seismic reflections to be reassessed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 160 m mostly turbiditic late Pleistocene sediment sequence (IODP Expedition 308, Hole U1319A) from the Brazos-Trinity intraslope basin system off Texas was investigated with paleo- and rock magnetic methods. Numerous layers depleted in iron oxides and enriched by the ferrimagnetic iron-sulfide mineral greigite (Fe3S4) were detected by diagnostic magnetic properties. From the distribution of these layers, their stratigraphic context and the present geochemical zonation, we develop two conceptual reaction models of greigite formation in non-steady depositional environments. The "sulfidization model" predicts single or twin greigite layers by incomplete transformation of iron monosulfides with polysulfides around the sulfate methane transition (SMT). The "oxidation model" explains greigite formation by partial oxidation of iron monosulfides near the iron redox boundary during periods of downward shifting oxidation fronts. The stratigraphic record provides evidence that both these greigite formation processes act here at typical depths of about 12-14 mbsf and 3-4 mbsf. Numerous "fossil" greigite layers most likely preserved by rapid upward shifts of the redox zonation denote past SMT and sea floor positions characterized by stagnant hemipelagic sedimentation conditions. Six diagenetic stages from a pristine magnetite-dominated to a fully greigite-dominated magnetic mineralogy were differentiated by combination of various hysteresis and remanence parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isotopic-geochemical study revealed presence of mantle He (3He/4He up to 223x10**-8) in gases from mud volcanoes of Eastern Georgia. This fact confirms that the Middle Kura basin fill encloses an intrusive body previously distinguished from geophysical data. Wide variations of carbon isotopic composition d13C in CH4 and CO2 and chemical composition of gas and water at temporally constant 3He/4He ratio indicate their relation with crustal processes. Unusual direct correlations of 3He/4He ratio with concentrations of He and CH4 and 40Ar/36Ar ratio can be explained by generation of gas in the Cenozoic sequence of the Middle Kura basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geochemical and rock magnetic investigations of sediments from three sites on the continental margin off Argentina and Uruguay were carried out to study diagenetic alteration of iron minerals driven by anaerobic oxidation of methane (AOM). The western Argentine Basin represents a suitable sedimentary environment to study nonsteady-state processes because it is characterized by highly dynamic depositional conditions. Mineralogic and bulk solid phase data document that the sediment mainly consists of terrigenous material with high contents of iron minerals. As a typical feature of these deposits, distinct minima in magnetic susceptibility (k) are observed. Pore water data reveal that these minima in susceptibility coincide with the current depth of the sulfate/methane transition (SMT) where HS- is generated by the process of AOM. The released HS- reacts with the abundant iron (oxyhydr)oxides resulting in the precipitation of iron sulfides accompanied by a nearly complete loss of magnetic susceptibility. Modeling of geochemical data suggest that the magnetic record in this area is highly influenced by a drastic change in mean sedimentation rate (SR) which occurred during the Pleistocene/Holocene transition. We assume that the strong decrease in mean SR encountered during this glacial/interglacial transition induced a fixation of the SMT at a specific depth. The stagnation has obviously enhanced diagenetic dissolution of iron (oxyhydr)oxides within a distinct sediment interval. This assumption was further substantiated by numerical modeling in which the mean SR was decreased from 100 cm/kyr during glacial times to 5 cm/kyr in the Holocene and the methane flux from below was fixed to a constant value. To obtain the observed geochemical and magnetic patterns, the SMT must remain at a fixed position for ~9000 yrs. This calculated value closely correlates to the timing of the Pleistocene/Holocene transition. The results of the model show additionally that a constant high mean SR would cause a concave-up profile of pore water sulfate under steady state conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we report 420 kyr long records of sediment geochemical and color variations from the southwestern Iberian Margin. We synchronized the Iberian Margin sediment record to Antarctic ice cores and speleothem records on millennial time scales and investigated the phase responses relative to orbital forcing of multiple proxy records available from these cores. Iberian Margin sediments contain strong precession power. Sediment "redness" (a* and 570-560 nm) and the ratio of long-chain alcohols to n-alkanes (C26OH/(C26OH + C29)) are highly coherent and in-phase with precession. Redder layers and more oxidizing conditions (low alcohol ratio) occur near precession minima (summer insolation maxima). We suggest these proxies respond rapidly to low-latitude insolation forcing by wind-driven processes (e.g., dust transport, upwelling, precipitation). Most Iberian Margin sediment parameters lag obliquity maxima by 7-8 ka, indicating a consistent linear response to insolation forcing at obliquity frequencies driven mainly by high-latitude processes. Although the lengths of the time series are short (420 ka) for detecting 100 kyr eccentricity cycles, the phase relationships support those obtained by Shackleton []. Antarctic temperature and the Iberian Margin alcohol ratios (C26OH/(C26OH + C29)) lead eccentricity maxima by 6 kyr, with lower ratios (increased oxygenation) occurring at eccentricity maxima. CO2, CH4, and Iberian SST are nearly in phase with eccentricity, and minimum ice volume (as inferred from Pacific d18Oseawater) lags eccentricity maxima by 10 kyr. The phase relationships derived in this study continue to support a potential role of the Earth's carbon cycle in contributing to the 100 kyr cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have measured the stable carbon isotopic composition of bulk organic matter (POC), alkenones, sterols, fatty acids, and phytol in the coccolithophorid Emiliania huxleyi grown in dilute batch cultures over a wide range of CO2 concentrations (1.1-53.5 micromol L-1). The carbon isotope fractionation of POC (POC) varied by ca. 7 per mil and was positively correlated with aqueous CO2 concentration [CO2aq]. While this result confirms general trends observed for the same alga grown in nitrogen-limited chemostat cultures, considerable differences were obtained in absolute values of POC and in the slope of the relationship of POC with growth rate and [CO2aq]. Also, a significantly greater offset was obtained between the delta13C of alkenones and bulk organic matter in this study compared with previous work (5.4, cf. 3.8 per mil). This suggests that the magnitude of the isotope offset may depend on growth conditions. Relative to POC, individual fatty acids were depleted in 13C by 2.3 per mil to 4.1 per mil, phytol was depleted in 13C by 1.9 per mil, and the major sterol 24-methylcholesta-5,22E-dien-3beta-ol was depleted in 13C by 8.5 per mil. This large spread of delta13C values for different lipid classes in the same alga indicates the need for caution in organic geochemical studies when assigning different sources to lipids that might have delta13C values differing by just a few per mil. Increases in [CO2aq] led to dramatic increases in the alkenone contents per cell and as a proportion of organic carbon, but there was no systematic effect on values of U37k- used for reconstructions of paleo sea surface temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of studies in two biogeochemically active zones of the Atlantic Ocean (the Benguela upwelling waters and the region influenced by the Congo River run-off) are reported in the book. A multidisciplinary approach included studies of the major elements of the ocean ecosystem: sea water, plankton, suspended matter, bottom sediments, interstitial waters, aerosols, as well as a wide complex of oceanographic studies carried out under a common program. Such an approach, as well as a use of new methodical solutions led to obtaining principally new information on different aspects of oceanology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small-scale shear zones are present in drillcore samples of abyssal peridotites from the Mid-Atlantic ridge at 15°20'N (Ocean Drilling Program Leg 209). The shear zones act as pathways for both evolved melts and hydrothermal fluids. We examined serpentinites directly adjacent to such zones to evaluate chemical changes resulting from melt-rock and fluid-rock interaction and their influence on the mineralogy. Compared to fresh harzburgite and melt-unaffected serpentinites, serpentinites adjacent to melt-bearing veins show a marked enrichment in rare earth elements (REE), strontium and high field strength elements (HFSE) zirconium and niobium. From comparison with published chemical data of variably serpentinized and melt-unaffected harzburgites, one possible interpretation is that interaction with the adjacent melt veins caused the enrichment in HFSE, whereas the REE contents might also be enriched due to hydrothermal processes. Enrichment in alumina during serpentinization is corroborated by reaction path models for interaction of seawater with harzburgite-plagiogranite mixtures. These models explain both increased amounts of alumina in the serpentinizing fluid for increasing amounts of plagiogranitic material mixed with harzburgite, and the absence of brucite from the secondary mineralogy due to elevated silica activity. By destabilizing brucite, nearby melt veins might fundamentally influence the low-temperature alteration behaviour of serpentinites. Although observations and model results are in general agreement, due to absence of any unaltered protolith a quantification of element transport during serpentinization is not straightforward.