97 resultados para AlN
Resumo:
The pollen record of three marine late Quaternary cores off Senegal shows a juxtaposition of Mediterranean, Northern Saharan, Central Saharan elements, which are considered transported by the trade winds from a winter-rainfall area, and Sahelian, Soudanese, Soudano-Guinean elements, considered transported both by winds and mostly by the Senegal River, and coming from the monsoonal, summer tropical rainfall area of southern West Africa. Littoral vegetation is either the edaphically dry and saline Chenopodiaceae from sebkhas at the time of the main regression, or the warm tropical humid mangrove with Rhizophora during the humid optimum period. Four stratigraphic zones reflect, from basis to top: Zone 4. A semi-arid period with a balanced pollen input. Zone 3. A very arid period with the disappearance of monsoonal pollen, probably from the disappearance of the Senegal River, a very saline littoral plain with Chenopodiaceae, a larger input of northern Saharan pollen from intensified trade winds. Zone 2. A quite humid period, much more so than today, very suddenly established, with a northward extension of the monsoonal areas, a rich littoral mangrove, and weakening of the trade winds. Zone l. A slow and steady evolution toward the present semi-humid conditions with regression of the mangrove, and of the monsoonal areas toward the south. Tentative datations and correlations with the Tchad area suggested: zone 4: 22,500 to 19,000 years BP; zone 3: 19,000 to 12,500 years BP; zone 2: 12,500 to 5,500 years BP; zone 1: 5,500 years BP to top of core. Dinoflagellate cysts display a tropical assemblage with mostly estuarine neritic elements and also a weak oceanic component, mostly in the lower slope core 47. Cosmopolitan taxa dominate the assemblage and only a few species point to more specialized environments. Quantitative variations of the assemblage are the basis of stratigraphy which is not similar to the pollen stratigraphy, and an inshore-outshore gradient has to be taken into account to correlate the three cores.
Resumo:
Pollen records from perennially frozen sequences provide vegetation and climate reconstruction for the last 48,000 14C years in the central part of Taymyr Peninsula. Open larch forest with Alnus fruticosa and Betula nana grew during the Kargin (Middle Weichselian) Interstade, ca. 48,000-25,000 14C yr B.P. The climate was generally warmer and wetter than today. Open steppe-like communities with Artemisia, Poaceae, Asteraceae, and herb tundralike communities with dwarf Betula and Salix dominated during the Sartan (Late Weichselian) Stade, ca. 24,000-10,300 14C yr B.P. The statistical information method used for climate reconstruction shows that the coldest climate was ca. 20,000-17,000 14C yr B.P. A warming (Allerød Interstade?) with mean July temperature ca. 1.5°C warmer than today occurred ca. 12,000 14C yr B.P. The following cooling with temperatures about 3°-4°C cooler than present and precipitation about 100 mm lower corresponds well with the Younger Dryas Stade. Tundra-steppe vegetation changed to Betula nana-Alnus fruticosa shrub tundra ca. 10,000 14C yr B.P. Larch appeared in the area ca. 9400 14C yr B.P. and disappeared after 2900 14C yr B.P. Cooling events ca. 10,500, 9600, and 8200 14C yr B.P. characterized the first half of the Holocene. A significant warming occurred ca. 8500 14C yr B.P., but the Holocene temperature maximum was at about 6000-4500 14C yr B.P. The vegetation cover approximated modern conditions ca. 2800 14C yr B.P. Late Holocene warming events occurred at ca. 3500, 2000, and 1000 14C yr B.P. A cooling (Little Ice Age?) took place between 500 and 200 14C yr ago.
Resumo:
A 200 m long marine pollen record from ODP Site 658 (21°N, 19°W) reveals cyclic fluctuations in vegetation and continental climate in northwestern Africa from 3.7 to 1.7 Ma. These cycles parallel oxygen isotope stages. Prior to 3.5 Ma, the distribution of tropical forests and mangrove swamps reached Cape Blanc, 5°N of the present distribution. Between 3.5 and 2.6 Ma, forests occurred at this latitude during irregular intervals and nearly disappeared afterwards. Likewise, a Saharan paleoriver flowed continuously until isotope Stage 134 (3.35 Ma). When river discharge ceased, wind transport of pollen grains prevailed over fluvial transport. Pollen indicators of trade winds gradually increased between 3.3 and 2.5 Ma. A strong aridification of the climate of northwestern Africa occurred during isotope Stage 130 (3.26 Ma). Afterwards, humid conditions reestablised followed by another aridification around 2.7 Ma. Repetitive latitudinal shifts of vegetation zones ranging from wooded savanna to desert flora dominated for the first time between between 2.6 and 2.4 Ma as a response to the glacial stages 104, 100 and 98. Although climatic conditions, recorded in the Pliocene, were not as dry as those of the middle and Late Pleistocene, latitudinal vegetation shifts near the end of the Pliocene resembled those of the interglacial-glacial cycles of the Brunhes chron.
Resumo:
A pollen profile from the highest known peatbog in the Alps is presented. The peatbog started to grow about 8000 years ago and over the last 5000 years. The influence of man on the vegetation is documented. Before the beginning of the bronze age pasturing started.
Resumo:
Reliable information of past vegetation changes are important to project future changes, especially for areas undergoing rapid transitioning such as the boreal treeline. The application of detailed sedDNA records has the potential to enhance our understanding of vegetation changes gained mainly from pollen studies of lake sediments. This study investigates sedDNA and pollen records from 31 lakes along a gradient of increasing larch forest cover in northern Siberia (Taymyr Peninsula) and compares them with vegetation field surveys within the lake's catchment. With respect to vegetation richness, sedDNA recorded 114 taxa, about half of them to species level, while pollen analyses identified 43 pollen taxa. Both approaches exceed the 31 taxa revealed by vegetation field surveys of 400 m**2 plots. From north to south, Larix percentages increase, as is consistently recorded by all three methods. Furthermore, tundra sites are separated from forested sites in the plots of the principal component analyses. Comparison of ordination results by Procrustes and Protest analyses yields a significant fit among all compared pairs of records. Despite the overall comparability of sedDNA and pollen analyses certain idiosyncrasies in the compositional signal are observed, such as high percentages of Alnus and Betula in all pollen spectra and high percentages of Salix in all sedDNA spectra. In conclusion, our results from the treeline show that sedDNA analyses perform better than pollen in recording site-specific richness (i.e. presence/absence of certain vegetation taxa in the direct vicinity of the lake) and perform as good as pollen in tracing regional vegetation composition.
Resumo:
We investigated the sedimentary record of Lake Hancza (northeastern Poland) using a multi-proxy approach, focusing on early to mid-Holocene climatic and environmental changes. AMS 14C dating of terrestrial macrofossils and sedimentation rate estimates from occasional varve thickness measurements were used to establish a chronology. The onset of the Holocene at c. 11600 cal. a BP is marked by the decline of Lateglacial shrub vegetation and a shift from clastic-detrital deposition to an autochthonous sedimentation dominated by biochemical calcite precipitation. Between 10000 and 9000 cal. a BP, a further environmental and climatic improvement is indicated by the spread of deciduous forests, an increase in lake organic matter and a 1.7% rise in the oxygen isotope ratios of both endogenic calcite and ostracod valves. Rising d18O values were probably caused by a combination of hydrological and climatic factors. The persistence of relatively cold and dry climate conditions in northeastern Poland during the first one and a half millennia of the Holocene could be related to a regional eastern European atmospheric circulation pattern. Prevailing anticyclonic circulation linked to a high-pressure cell above the retreating Scandinavian Ice Sheet might have blocked the influence of warm and moist Westerlies and attenuated the early Holocene climatic amelioration in the Lake Hancza region until the final decay of the ice sheet.
Resumo:
The deep-sea cores M 16415-2 and M 16416-2 at about 9°N off Sierra Leone were analysed palynologically for the time interval 140,000-70,000 yr B.P. Results were presented in absolute (pollen concentration and pollen influx) and relative diagrams (pollen percentage). In a previous study it was evidenced that in northwest Africa pollen is mainly transported to the Atlantic by wind, so that the efficiency of aeolian pollen transport (pollen flux) could be used to evaluate changes in the intensity of the northeast trade winds. The glacial episodes (represented by the oxygen isotope stages 6 and 4) are characterized by strong northeast trade winds, whereas the last interglacial (stage 5) is characterized by weak trade winds. The pollen influx diagram shows that the intensity of the trade winds increased slightly during the relatively cool intervals of stage 5 (viz. 5.4 and 5.2). Tropical forest had maximally expanded around 124,000 yr B.P. (stage 5.5), around 98,000 yr B.P. (transition of stage 5.3 to 5.2), and around 70,000 yr B.P. (first part of stage 4): an increasing delay of the response of tropical forest to global intervals with maximum temperature is apparent during the last interglacial. As tropical forests need continuous humidity, the record of tropical forest monitors changes in climatic humidity south of the Sahara. During the last interglacial, the southern boundary of the Sahara shifted only little: expansions and contractions of the tropical forest area are correlated with contra-oscillations of the grass-dominated savanna zone. Great latitudinal shifts of the desert savanna boundary, on the contrary, occurred during the penultimate glacial interglacial transition (around 128,000 yr B.P.) to the north, and during the last interglacial-glacial transition (around 65,000 yr B.P.) to the south.
Resumo:
A multi-proxy palaeoecological investigation including pollen, plant macrofossil, radiocarbon and sedimentological analyses, was performed on a small mountain lake in the Eastern Pyrenees. This has allowed the reconstruction of: (1) the vegetation history of the area based on five pollen diagrams and eight AMS14C dates and (2) the past lake-level changes, based on plant macrofossil, lithological and pollen analysis of two stratigraphical transects correlated by pollen analysis. The palaeolake may have appeared before the Younger Dryas; the lake-level was low and the vegetation dominated by cold steppic grasslands. The lake-level rose to its highest level during the Holocene in the Middle Atlantic (at ca. 5060±45 b.p.). Postglacial forests (Quercetum mixtum and Abieto-Fagetum) developed progressively in the lower part of the valley, while dense Pinus uncinata forests rapidly invaded the surroundings of the mire and remained the dominant local vegetation until present. The observed lowering of the lake levels during the Late Atlantic and the Subboreal (from 5060 ± B.P. to 3590±40 b.p.) was related to the overgrowth of the mire. The first obvious indications of anthropogenic disturbances of the vegetation are recorded at the Atlantic/Subboreal boundary as a reduction in the forest component, which has accelerated during the last two millennia.
Resumo:
Non-glaciated Arctic lowlands in north-east Siberia were subjected to extensive landscape and environmental changes during the Late Quaternary. Coastal cliffs along the Arctic shelf seas expose terrestrial archives containing numerous palaeoenvironmental indicators (e.g., pollen, plant macro-fossils and mammal fossils) preserved in the permafrost. The presented sedimentological (grain size, magnetic susceptibility and biogeochemical parameters), cryolithological, geochronological (radiocarbon, accelerator mass spectrometry and infrared-stimulated luminescence), heavy mineral and palaeoecological records from Cape Mamontov Klyk record the environmental dynamics of an Arctic shelf lowland east of the Taymyr Peninsula, and thus, near the eastern edge of the Eurasian ice sheet, over the last 60 Ky. This region is also considered to be the westernmost part of Beringia, the non-glaciated landmass that lay between the Eurasian and the Laurentian ice caps during the Late Pleistocene. Several units and subunits of sand deposits, peat-sand alternations, ice-rich palaeocryosol sequences (Ice Complex) and peaty fillings of thermokarst depressions and valleys were presented. The recorded proxy data sets reflect cold stadial climate conditions between 60 and 50 Kya, moderate inderstadial conditions between 50 and 25 Kya and cold stadial conditions from 25 to 15 Kya. The Late Pleistocene to Holocene transition, including the Allerød warm period, the early to middle Holocene thermal optimum and the late Holocene cooling, are also recorded. Three phases of landscape dynamic (fluvial/alluvial, irregular slope run-off and thermokarst) were presented in a schematic model, and were subsequently correlated with the supraregional environmental history between the Early Weichselian and the Holocene.
Resumo:
Two new Standard pollen diagrams from the raised bog Ageröds mosse in central Scania are presented and discussed. They have been made giving extensive consideration to the NAP and spores also. The new diagrams comprise in the main only the Post-glacial and can easily be compared with the earlier published Standard diagram from the bog (T. NILSSON 1935). The development of the Post-glacial Vegetation in the surroundings is also discussed and compared with the conditions in the southernmost part of the province (Bjärsjöholmssjön, T. Nilsson 1961). One of the new diagrams has been prepared in connection with the study of a core brought up by means of a special borer in order to bring about C14 datings. The core was almost ömlong and had a diameter of 6 cm. It was divided into pieces of 2-6 cm, which were preserved. After the preparation of the pollen diagram, suitable samples were selected for C14 dating. In all 33 samples, comprising the whole Post-glacial inclusive of the youngest part of the Late-glacial, were C14-dated. With the aid of the C14 dates the growth conditions of the bog are discussed. After very slow Sedimentation of predominantly minerogenous deposits in the last part of the Late-glacial, and still slow Sedimentation of gyttjas in the oldest part of the Post-glacial, the rate of growth (primarily of the gyttja) distinctly increased in the first part of the Late Boreal. A temporary retardation of the growth of the sphagnum peat at the end of the Sub-boreal is probably entirely local. The average rate of growth of the really highly humified parts of the old sphagnum peat amounts to 42 mm per Century, that of the slightly humified young sphagnum peat 81 mm per Century or somewhat more. Based on the C14-determinations, the pollen zone boundaries have been given the following approximate dates: boundary Late-glacial/Post-glacial (DR/PB) 8300 B.C., boundary Pre-boreal/Boreal (PB/BO) 7900 B.C., boundary Early Boreal/Late Boreal (BO 1/2) 6800 B.C., boundary Boreal/Atlantic (BO/AT) 6200 B.C., boundary Early Atlantic/Late Atlantic (AT 1/2) 4600 B.C. (?), boundary Atlantic/Sub-boreal (AT/SB) 3300 B.C., boundary Early Sub-boreal/Late Sub-boreal (SB 1/2) 1700-1800 B.C., boundary Sub-boreal/Sub-atlantic (SB/ SA) 300 B.C., boundary Early Sub-atlantic/Late Sub-atlantic (SA 1/2) 650 A.D.
Resumo:
Excavations were carried out in a Late Palaeolithic site in the community of Bad Buchau-Kappel between 2003 and 2007. Archaeological investigations covered a total of more than 200 m**2. This site is the product of what likely were multiple occupations that occurred during the Late Glacial on the Federsee shore in this location. The site is situated on a mineral ridge that projected into the former Late Glacial lake Federsee. This beach ridge consists of deposits of fine to coarse gravel and sand and was surrounded by open water, except for a connection to the solid shore on the south. A lagoon lay between the hook-shaped ridge and the shore of the Federsee. This exposed location provided optimal access to the water of the lake. In addition, the small lagoon may have served as a natural harbor for landing boats or canoes. Sedimentological and palynological investigations document the dynamic history of the location between 14,500 and 11,600 years before present (cal BP). Evidence of the deposition of sands, gravels and muds since the Bølling Interstadial is provided by stratigraphic and palynological analyses. The major occupation occurred in the second half of the Younger Dryas period. Most of the finds were located on or in the sediments of the ridge; fewer finds occurred in the surrounding mud, which was also deposited during the Younger Dryas. Direct dates on some bone fragments, however, demonstrate that intermittent sporadic occupations also took place during the two millennia of the Meiendorf, Bølling, and Allerød Interstadials. These bones were reworked during the Younger Dryas and redeposited in the mud. A 14C date from one bone of 11,600 years ago (cal BP) places the Late Palaeolithic occupation of the ridge at the very end of the Younger Dryas, which is in agreement with stratigraphic observations. Stone artifacts, numbering 3,281, comprise the majority of finds from the site. These include typical artifacts of the Late Palaeolithic, such as backed points, short scrapers, and small burins. There are no bipointes or Malaurie-Points, which is in accord with the absolute date of the occupation. A majority of the artifacts are made from a brown chert that is obtainable a few kilometers north of the site in sediments of the Graupensandrinne. Other raw materials include red and green radiolarite that occur in the fluvioglacial gravels of Oberschwaben, as well as quartzite and lydite. The only non-local material present is a few artifacts of tabular chert from the region near Kelheim in Bavaria. A unique find consists of two fragments of a double-barbed harpoon made of red deer antler, which was found in the Younger Dryas mud. It is likely, but not certain, that this find belongs to the same assemblage as the numerous stone artifacts. Although not numerous, animal bones were also found in the excavations. Most of them lay in sediments of the Younger Dryas, but several 14C dates place some of these bones in earlier periods, including the Meiendorf, Bølling, and Allerød Interstadials. These bones were reworked by water and redeposited in mud sediments during the Younger Dryas. As a result, it is difficult to attribute individual bones to particular chronological positions without exact dates. Species that could be identified include wild horse (Equus spec.), moose or elk (Alces alces), red deer (Cervus elaphus), roe deer (Capreolus capreolus), aurochs or bison (Bos spec.), wild boar (Sus scrofa), as well as birds and fish, including pike (Esox Lucius).
Resumo:
A Late Pleistocene and Holocene sediment core from the nowadays terrestrialised portion of the Löddigsee in Southern Mecklenburg, Germany was palynologically investigated. The lake is situated in the rarely investigated Young moraine area at the transition from the Weichselian to the Saalian glaciation. The high-resolution pollen diagram contributes to the establishment of the north-eastern German Late Pleistocene pollen stratigraphy. The vegetation distribution pattern after the end of the Weichselian is in good agreement with other studies from North-eastern Germany, but also has its own characteristics. The Holocene vegetation development reveals features from the north-eastern and north-western German lowlands. A special focus was laid on the environmental history of the two settlements on an island within the lake (Late Neolithic and Younger Slavic period), which were preserved under moist conditions. Both settlements were constructed during a period of low lake level. Although there is evidence of agriculture in the area during the respective periods, the two island settlements seem to have served other purposes.
Resumo:
This initial survey of pollen from 192 samples from Hole 794A, supplemented by 189 samples from Hole 795 and 797B, suggests that marine pollen assemblages from the southwestern Sea of Japan provide a consistent Neogene pollen stratigraphy and a solid basis for regional paleoenvironmental reconstructions. Late Miocene vegetation inferred from these pollen data, a mix of conifer and broad-leaf elements with now-extinct Tertiary types well represented, appears similar to Aniai-type floras of Japan. During the late Miocene through early Pliocene, as Tertiary types declined, conifers (including the Sequoia/Cryptomeria group) became more prominent than broad-leaf elements, and herbs played an increasing role in the vegetation. Middle Pliocene pollen assemblages imply significant changes in forest composition. In a 500,000-yr interval centered at ~4 m.y., Tertiary and warm-temperate deciduous types re-expanded and were comparable to or greater than middle-late Miocene levels. Temperate and cold-temperate conifers {Picea, Abies, Tsuga) were minimal. Subsequently, Tertiary and deciduous forest components (including Quercus) decreased, Picea, Tsuga, and Abies were again prominent, and herbs formed an increasingly larger part of the vegetation. Between ~3 m.y. and -2.5 m.y., conifers, except for Cryptomeria types, were prominent, Quercus continued to decline, and other broad-leaf trees were minor. Over the last 2 Ma, the very large and frequent changes in forest composition inferred from pollen in the Sea of Japan correspond to forest dynamics inferred from changes in pollen and floral assemblages throughout Japan. Given present vegetation/climate relationships, broad trends in Neogene climate inferred from these preliminary pollen data include decreasing temperatures, increasing seasonality in temperatures and precipitation, and increasing amplitude and frequency of climatic change. Two significant events, centered at ~9 m.y. and ~4 m.y., punctuate the gradual deterioration of the equable warm, humid subtropical/warm temperate late Miocene and early Pliocene climates. The first indication of cold-temperate conditions comparable to those of Pleistocene glacial intervals occurs ~3 m.y. Subsequently, regional climates oscillated rapidly between temperate and cold-temperate regimes that supported conifer and mixed broad-leaf forests; however, climatic extremes were apparently never great enough to displace warm-temperate and temperate forests from Honshu nor to produce arctic climates on the west coast of Japan.
Resumo:
An 1180-cm long core recovered from Lake Lyadhej-To (68°15'N, 65°45'E, 150 m a.s.l.) at the NW rim of the Polar Urals Mountains reflects the Holocene environmental history from ca. 11,000 cal. yr BP. Pollen assemblages from the diamicton (ca. 11,000-10,700 cal. yr BP) are dominated by Pre-Quaternary spores and redeposited Pinaceae pollen, pointing to a high terrestrial input. Turbid and nutrient-poor conditions existed in the lake ca. 10,700-10,550 cal. yr BP. The chironomid-inferred reconstructions suggest that mean July temperature increased rapidly from 10.0 to 11.8 °C during this period. Sparse, treeless vegetation dominated on the disturbed and denuded soils in the catchment area. A distinct dominance of planktonic diatoms ca. 10,500-8800 cal. yr BP points to the lowest lake-ice coverage, the longest growing season and the highest bioproductivity during the lake history. Birch forest with some shrub alder grew around the lake reflecting the warmest climate conditions during the Holocene. Mean July temperature was likely 11-13 °C and annual precipitation-400-500 mm. The period ca. 8800-5500 cal. yr BP is characterized by a gradual deterioration of environmental conditions in the lake and lake catchment. The pollen- and chironomid-inferred temperatures reflect a warm period (ca. 6500-6000 cal. BP) with a mean July temperature at least 1-2 °C higher than today. Birch forests disappeared from the lake vicinity after 6000 cal. yr BP. The vegetation in the Lyadhej-To region became similar to the modern one. Shrub (Betula nana, Salix) and herb tundra have dominated the lake catchment since ca. 5500 cal. yr BP. All proxies suggest rather harsh environmental conditions. Diatom assemblages reflect relatively short growing seasons and a longer persistence of lake-ice ca. 5500-2500 cal. yr BP. Pollen-based climate reconstructions suggest significant cooling between ca. 5500 and 3500 cal. yr BP with a mean July temperature 8-10 °C and annual precipitation-300-400 mm. The bioproductivity in the lake remained low after 2500 cal. yr BP, but biogeochemical proxies reflect a higher terrestrial influx. Changes in the diatom content may indicate warmer water temperatures and a reduced ice cover on the lake. However, chironomid-based reconstructions reflect a period with minimal temperatures during the lake history.
Resumo:
Sediments from the Black Sea, a region historically dominated by forests and steppe landscapes, are a valuable source of detailed information on the changes in regional terrestrial and aquatic environments at decadal to millennial scales. Here we present multi-proxy environmental records (pollen, dinoflagellate cysts, Ca, Ti and oxygen isotope data) from the uppermost 305 cm of the core 22-GC3 (42°13.53' N, 36°29.55' E) collected from a water depth of 838 m in the southern part of the Black Sea in 2007. The records span the last ~ 18 kyr (all ages are given in cal kyr BP). The pollen data reveal the dominance of the Artemisia-steppe in the region, suggesting rather dry/cold environments ~ 18-14.5 kyr BP. Warming/humidity increase during melt-water pulses (~ 16.1-14.5 kyr BP), indicated by d18O records from the 22-GC3 core sediment and from the Sofular Cave stalagmite, is expressed in more negative d13C values from the Sofular Cave, usually interpreted as the spreading of C3 plants. The records representing the interstadial complex (~ 14.5-12.9 kyr BP) show an increase in temperature and moisture, indicated by forest development, increased primary productivity and reduced surface run-off, whereas the switch from primary terrigenous to primary authigenic Ca origin occurs ~ 500 yr later. The Younger Dryas cooling is clearly demonstrated by more negative d13C values from the Sofular Cave and a reduction of pines. The early Holocene (11.7-8.5 kyr BP) interval reveals relatively dry conditions compared to the mostly moist and warm middle Holocene (8.5-5 kyr BP), which is characterized by the establishment of the species-rich warm mixed and temperate deciduous forests in the low elevation belt, temperate deciduous beech-hornbeam forests in the middle and cool conifer forest in upper mountain belt. The border between the early and middle Holocene in the vegetation records coincides with the opening of the Mediterranean corridor at ~ 8.3 kyr BP, as indicated by a marked change in the dinocyst assemblages and in the sediment lithology. Changes in the pollen assemblages indicate a reduction in forest cover after ~ 5 kyr BP, which was likely caused by increased anthropogenic pressure on the regional vegetation.