840 resultados para ICE-SHEET


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stable oxygen and carbon isotope and sedimentological-paleontological investigations supported by accelerator mass spectrometry 14C datings were carried out on cores from north of 85°N in the eastern central Arctic Ocean. Significant changes in accumulation rates, provenance of ice-rafted debris (IRD), and planktic productivity over the past 80,000 years are documented. During peak glacials, i.e., oxygen isotope stages 4 and 2, the Arctic Ocean was covered by sea ice with decreased seasonal variation, limiting planktic productivity and bulk sedimentation rates. In early stage 3 and during Termination I, major deglaciations of the circum-Arctic regions caused lowered salinities and poor oxygenation of central Arctic surface waters. A meltwater spike and an associated IRD peak dated to ~14-12 14C ka can be traced over the southern Eurasian Basin of the Arctic Ocean. This event was associated with the early and rapid deglaciation of the marine-based Barents Sea Ice Sheet. A separate Termination Ib meltwater event is most conspicuous in the central Arctic and is associated with characteristic dolomitic carbonate IRD. This lithology suggests an origin of glacial ice from northern Canada and northern Greenland where lower Paleozoic platform carbonates crop extensively out.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Continuous sediment sections spanning the last 2.8 Ma have been studied using stable isotope stratigraphy and sedimentological methods. By using paleomagnetic reversals as a chronostratigraphic tool, climatic and paleoceanographic changes have been placed in a time framework. The results show that the major expansion of the Scandinavian Ice Sheet to the coastal areas occurred in the late Neogene period at about 2.8 Ma. Relatively high-amplitude glacials appeared until about 2 Ma. The period between 2.8 and 1.2 Ma was marked by cold surface water conditions with only weak influx of temperate Atlantic water as compared with late Quaternary interglacials. During this period, climatic variations were smaller in amplitude than in the late Quaternary. The Norwegian Sea was a sink of deep water throughout the studied period but deep water ventilation was reduced and calcite dissolution was high compared with the Holocene. Deep water formed by other processes than today. Between 2 and 1.2 Ma, glaciations in Scandinavia were relatively small. A transition toward larger glacials took place during the period 1.2 to 0.6 Ma, corresponding with warmer interglacials and increasing influx of temperate surface water during interglacials. A strong thermal gradient was present between the Norwegian Sea and the northeastern Atlantic during the Matuyama (2.5-0.7 Ma). This is interpreted as a sign of a more zonal and less meridional climatic system over the region as compared with the present situation. The transition towards more meridionality took place over several hundred thousand yr. Only during the last 0.6 Ma has the oceanographic and climatic system of the Norwegian Sea varied in the manner described from previous studies of the late Quaternary.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Past sea-level records provide invaluable information about the response of ice sheets to climate forcing. Some such records suggest that the last deglaciation was punctuated by a dramatic period of sea-level rise, of about 20 metres, in less than 500 years. Controversy about the amplitude and timing of this meltwater pulse (MWP-1A) has, however, led to uncertainty about the source of the melt water and its temporal and causal relationships with the abrupt climate changes of the deglaciation. Here we show that MWP-1A started no earlier than 14,650 years ago and ended before 14,310 years ago, making it coeval with the Bølling warming. Our results, based on corals drilled offshore from Tahiti during Integrated Ocean Drilling Project Expedition 310, reveal that the increase in sea level at Tahiti was between 12 and 22 metres, with a most probable value between 14 and 18 metres, establishing a significant meltwater contribution from the Southern Hemisphere. This implies that the rate of eustatic sea-level rise exceeded 40 millimetres per year during MWP-1A.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Belgica Trough and the adjacent Belgica Trough Mouth Fan in the southern Bellingshausen Sea (Pacific sector of the Southern Ocean) mark the location of a major outlet for the West Antarctic Ice Sheet during the Late Quaternary. The drainage basin of an ice stream that advanced through Belgica Trough across the shelf during the last glacial period comprised an area exceeding 200,000 km**2 in the West Antarctic hinterland. Previous studies, mainly based on marine-geophysical data from the continental shelf and slope, focused on the bathymetry and seafloor bedforms, and the reconstruction of associated depositional processes and ice- drainage patterns. In contrast, there was only sparse information from seabed sediments recovered by coring. In this paper, we present lithological and clay mineralogical data of 21 sediment cores collected from the shelf and slope of the southern Bellingshausen Sea. Most cores recovered three lithological units, which can be attributed to facies types deposited under glacial, transitional and seasonally open-marine conditions. The clay mineral assemblages document coinciding changes in provenance. The relationship between the clay mineral assemblages in the subglacial and proglacial sediments on the shelf and the glacial diamictons on the slope confirms that a grounded ice stream advanced through Belgica Trough to the shelf break during the past, thereby depositing detritus eroded in the West Antarctic hinterland as soft till on the shelf and as glaciogenic debris flows on the slope. The thinness of the transitional and seasonally open-marine sediments in the cores suggests that this ice advance occurred during the last glacial period. Clay mineralogical, acoustic sub-bottom and seismic data furthermore demonstrate that the palaeo-ice stream probably reworked old sedimentary strata, including older tills, on the shelf and incorporated this debris into its till bed. The geographical heterogeneity of the clay mineral assemblages in the sub- and proglacial diamictons and gravelly deposits indicates that they were eroded from underlying sedimentary strata of different ages. These strata may have been deposited during either different phases of the last glacial period or different glacial and interglacial periods. Additionally, the clay mineralogical heterogeneity of the soft tills recovered on the shelf suggests that the drainage area of the palaeo-ice stream flowing through Belgica Trough changed through time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sedimentary processes in the southeastern Weddell Sea are influenced by glacial-interglacial ice-shelf dynamics and the cyclonic circulation of the Weddell Gyre, which affects all water masses down to the sea floor. Significantly increased sedimentation rates occur during glacial stages, when ice sheets advance to the shelf edge and trigger gravitational sediment transport to the deep sea. Downslope transport on the Crary Fan and off Dronning Maud and Coats Land is channelized into three huge channel systems, which originate on the eastern-, the central and the western Crary Fan. They gradually turn from a northerly direction eastward until they follow a course parallel to the continental slope. All channels show strongly asymmetric cross sections with well-developed levees on their northwestern sides, forming wedge-shaped sediment bodies. They level off very gently. Levees on the southeastern sides are small, if present at all. This characteristic morphology likely results from the process of combined turbidite-contourite deposition. Strong thermohaline currents of the Weddell Gyre entrain particles from turbidity-current suspensions, which flow down the channels, and carry them westward out of the channel where they settle on a surface gently dipping away from the channel. These sediments are intercalated with overbank deposits of high-energy and high-volume turbidity currents, which preferentially flood the left of the channels (looking downchannel) as a result of Coriolis force. In the distal setting of the easternmost channel-levee complex, where thermohaline currents are directed northeastward as a result of a recirculation of water masses from the Enderby Basin, the setting and the internal structures of a wedge-shaped sediment body indicate a contourite drift rather than a channel levee. Dating of the sediments reveals that the levees in their present form started to develop with a late Miocene cooling event, which caused an expansion of the East Antarctic Ice Sheet and an invigoration of thermohaline current activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-glaciated Arctic lowlands in north-east Siberia were subjected to extensive landscape and environmental changes during the Late Quaternary. Coastal cliffs along the Arctic shelf seas expose terrestrial archives containing numerous palaeoenvironmental indicators (e.g., pollen, plant macro-fossils and mammal fossils) preserved in the permafrost. The presented sedimentological (grain size, magnetic susceptibility and biogeochemical parameters), cryolithological, geochronological (radiocarbon, accelerator mass spectrometry and infrared-stimulated luminescence), heavy mineral and palaeoecological records from Cape Mamontov Klyk record the environmental dynamics of an Arctic shelf lowland east of the Taymyr Peninsula, and thus, near the eastern edge of the Eurasian ice sheet, over the last 60 Ky. This region is also considered to be the westernmost part of Beringia, the non-glaciated landmass that lay between the Eurasian and the Laurentian ice caps during the Late Pleistocene. Several units and subunits of sand deposits, peat-sand alternations, ice-rich palaeocryosol sequences (Ice Complex) and peaty fillings of thermokarst depressions and valleys were presented. The recorded proxy data sets reflect cold stadial climate conditions between 60 and 50 Kya, moderate inderstadial conditions between 50 and 25 Kya and cold stadial conditions from 25 to 15 Kya. The Late Pleistocene to Holocene transition, including the Allerød warm period, the early to middle Holocene thermal optimum and the late Holocene cooling, are also recorded. Three phases of landscape dynamic (fluvial/alluvial, irregular slope run-off and thermokarst) were presented in a schematic model, and were subsequently correlated with the supraregional environmental history between the Early Weichselian and the Holocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study focuses on sedimentological investigations of sediment cores recovered during the international Arctic'91, expeditions with the German research ice breaker RV "Polarstern" to the European sector of the Arctic Ocean. Here, we deduce the last glacial/interglacial changes in transport mechanism and sedimentation from the clay mineral group smectite. We choose the smectites as an example of how sediment mineralogy can be linked with particular source regions (the Kara and Laptev seas), distinct transport mechanism (sea ice and surface currents) and sedimentation processes. Smectite contents in Arctic sediments discussed for two time slices, including the Last Glacial Maximum (LGM), and the last deglaciation (Termination I), reveal the highest variability subsequent to the retreat of the Eurasian ice sheets. Our results show that smectite anomalies in the Eurasian Basin are associated with distinct meltwater pulses and occurred around 13.5-13.0 14C ka B.P. Compelling evidence is provided that these anomalies are deduced from sea-ice entrained sediments from the eastern Kara Sea that entered the Arctic Ocean after ice-sheet break-up and eventually flooding of the Kara Sea. We propose that smectite anomalies in sediments of the eastern Arctic Ocean can be utilized to identify deglacial events and to help decipher configurations of the Eurasian ice sheets. The identification of smectite maxima along the modern sea-ice edge in the Eurasian Basin further indicates biologically enhanced sedimentation from melting sea ice allowing the reconstruction of seasonally open water in the region. Hence, considering the poor preservation conditions of primary paleoceanographic proxies in the Arctic Ocean, the clay mineral contents, particularly the smectite group, may be one alternative tool for paleoclimatic reconstruction in the Eurasian Basin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ice sheets in the North American Arctic and, to a lesser extent, those in northern Eurasia calved large quantities of icebergs that drifted through Fram Strait into the Greenland Sea several times during the late Pleistocene. These icebergs deposited Fe oxide grains (45-250 ?m) and coarse lithic clasts >250 ?m matched to specific circum-Arctic sources. Four massive Arctic iceberg export events are identified from the Laurentide and the Innuitian ice sheets, between 14 and 34 ka (calendar years) in a sediment core from Fram Strait. These relatively short duration (<1-4 kyr) events contain 3-5 times the background levels of Fe oxide grains. They began suddenly, as indicated by a steep rise in the number of grains matched to an ice sheet source, suggesting rapid purges of ice through Fram Strait, due perhaps to collapse of ice sheets. The larger events from the northwestern Laurentide ice sheet are preceded by events from the Innuitian ice sheet. Despite the chronological uncertainties, the Arctic export events appear to occur prior to Heinrich events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent intensification of wind-driven upwelling of warm upper circumpolar deep water (UCDW) has been linked to accelerated melting of West Antarctic ice shelves and glaciers. To better assess the long term relationship between UCDWupwelling and the stability of theWest Antarctic Ice Sheet, we present a multi-proxy reconstruction of surface and bottom water conditions in Marguerite Bay, West Antarctic Peninsula (WAP), through the Holocene. A combination of sedimentological, diatom and foraminiferal records are, for the first time, presented together to infer a decline in UCDW influence within Marguerite Bay through the early to mid Holocene and the dominance of cyclic forcing in the late Holocene. Extensive glacial melt, limited sea ice and enhanced primary productivity between 9.7 and 7.0 ka BP is considered to be most consistent with persistent incursions of UCDW through Marguerite Trough. From 7.0 ka BP sea ice seasons increased and productivity decreased, suggesting that UCDW influence within Marguerite Bay waned, coincident with the equatorward migration of the Southern Hemisphere Westerly Winds (SWW). UCDW influence continued through the mid Holocene, and by 4.2 ka BP lengthy sea ice seasons persisted within Marguerite Bay. Intermittent melting and reforming of this sea ice within the late Holocene may be indicative of episodic incursions of UCDW into Marguerite Bay during this period. The cyclical changes in the oceanography within Marguerite Bay during the late Holocene is consistent with enhanced sensitively to ENSO forcing as opposed to the SWW-forcing that appears to have dominated the early to mid Holocene. Current measurements of the oceanography of the WAP continental shelf suggest that the system has now returned to the early Holocene-like oceanographic configuration reported here, which in both cases has been associated with rapid deglaciation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cape Roberts Project drillcore 1 was obtained from Roberts Ridge, a sea-floor high located at 77°S, 16 km offshore from Cape Roberts in western McMurdo Sound, Antarctica. The recovered core is about 147 m long with the upper 43.15 metres below the sea floor (revised figure) being dated as Quarternary and the older part of the sequence being Miocene. The core includes nine facies: sandy diamict, muddy diamict, gravel/conglomerate, mud(stone), clay(stone) and carbonate. These facies occure in associations that are repeated in particulare sequences throughout the core, and are interpreted as representing different depositional environments through time. Seven lithofacies associations are interpreted as representing offshore shelf, ice protected/below wave-base; prodeltaic/offshore shelf; delta front/sandy shelf; ice system; subglacial till/rainout diamict/debris flow diamicts singly or in combination; and a carbonate-rich shelf bank. The facies associations are used to infer that the Quaternary section represents deposition on a polar shelf with perhaps two or three glacial fluctuations. The Quaternary carbonate unit indicates a period of ice sheet retreat, but local glacial activity may have increased with an increase in costal precipitation. The Miocene section represents polythermal glacial systems. The older Miocene section is glacially dominated whereas the younger section is much less so. The glacially dominated section may provide evidence for a major glacial advance thar resulted un a low stand of global eustatic sea level at that time. After the low stand, eustatic sea level was gradually rising during deposition of the younger section dominated more by non-glacial processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxygen isotope measurements in Greenland ice demonstrate that a series of rapid warm-cold oscillations -called Dansgaard-Oeschger events- punctuated the last glaciation (Dansgard et al., 1993, doi:10.1038/364218a0). Here we present records of sea surface temperature from North Atlantic sediments spanning the past 90 kyr which contain a series of rapid temperature oscillations closely matching those in the ice-core record, confirming predictions that the ocean must bear the imprint of the Dansgaard-Oeschger events (Broecker et al., 1988, doi:10.1016/0033-5894(88)90082-8; 1990, doi:10.1029/PA005i004p00469). Moreover, we show that between 20 and 80 kyr ago, the shifts in ocean-atmosphere temperature are bundled into cooling cycles, lasting on average 10 to 15 kyr, with asymmetrical saw-tooth shapes. Each cycle culminated in an enormous discharge of icebergs into the North Atlantic (a 'Hein-rich event' (Bond et al., 1992, doi:10.1038/360245a0; Broecker et al., 1992, doi:10.1007/BF00193540), followed by an abrupt shift to a warmer climate. These cycles document a previously unrecognized link between ice sheet behaviour and ocean-atmosphere temperature changes. An important question that remains to be resolved is whether the cycles are driven by external factors, such as orbital forcing, or by inter-nal ice-sheet dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At Site 697 a 320 m thick Pleistocene and Pliocene section was recovered, consisting of hemipelagic terrigenous mud with varying amounts of diatoms, thin altered ash layers, and ice-rafted debris (IRD). Sedimentation rates range from 41 m/m.y. (upper Pleistocene) to 150 m/m.y. (lower Pliocene). Diatom percentage and sediment grain-size have been measured for the whole section with approximately one sample per 5,000 yr. IRD is most abundant in the lower Pliocene (sediments older than 4.5 Ma) following the first major West Antarctic glaciation. A decrease in IRD to near-zero above 3.2 Ma may record a transition from valley glaciers to a grounded ice-sheet on West Antarctica. Bottom current flow, recorded in sediments as the proportion of silt, was at a maximum around 3.0-3.3 Ma then gradually decreased until 0.5 Ma. In the upper Pleistocene, maxima in diatom percentage are assumed to occur during interglacials, implying reduced sea-ice cover; maxima in silt percentage correspond to diatom maxima, implying stronger bottom water flow during interglacials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On the basis of 52 sediment cores, analyzed and dated at high resolution, the paleoceanography and climate of the Last Glacial Maximum (LGM) were reconstructed in detail for the Fram Strait and the eastern and central Arctic Ocean. Sediment composition and stable isotope data suggest three distinct paleoenvironments: (1) a productive region in the eastern to central Fram Strait and along the northern Barents Sea continental margin characterized by Atlantic Water advection, frequent open water conditions, and occasional local meltwater supply and iceberg calving from the Barents Sea Ice Sheet; (2) an intermediate region in the southwestern Eurasian Basin (up to 84-85°N) and the western Fram Strait characterized by subsurface Atlantic Water advection and recirculation, a moderately high planktic productivity, and a perennial ice cover that breaks up only occasionally; and (3) a central Arctic region (north of 85°N in the Eurasian Basin) characterized by a low-salinity surface water layer and a thick ice cover that strongly reduces bioproduction and bulk sedimentation rates. Although the total inflow of Atlantic Water into the Arctic Ocean may have been reduced during the LGM, its impact on ice coverage and halocline structure in the Fram Strait and southwestern Eurasian Basin was strong.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paleoenvironmental conditions through MIS 15-9 at the Mediterranean Ocean Drilling Program (ODP) Site 975 were interpreted by high resolution study of calcareous plankton assemblages compared with available d18O and d13C records and high resolution paleoclimate proxies from the Atlantic Ocean. Sea Surface Temperatures (SSTs) have been estimated from planktonic foraminiferal assemblages using the artificial neural networks method. Calcareous plankton varied dominantly on a glacial-interglacial scale as testified by the SST record, foraminiferal diversity, total coccolith abundance and changes in warm-water calcareous nannofossil taxa. A general increase in foraminiferal diversity and of total coccolith abundance is observed during interglacials. Warmest SSTs are reached during MIS 11, while MIS 12 and MIS 10 represent the coldest intervals of the studied record. During MIS 12, one of the most extreme glacials of the last million years, occurrence of Globorotalia inflata and of neogloboquadrinids indicates a shoaling of the interface between Atlantic inflowing and Mediterranean outflowing waters. Among calcareous nannofossils the distribution of Gephyrocapsa margereli-G. muellerae > 4 µm also supports a reduced Atlantic-Mediterranean exchange during MIS 12. Superimposed on glacial-interglacial variability, six short-terms coolings are recognized during MIS 12 and 10, which appear comparable in their distribution and amplitude to the Heinrich - type events documented in the Atlantic Ocean in the same interval. During these H-type events, N. pachyderma (s) and G. margereli-G. muellerae > 4 µm increase as a response to the enhanced inflow of cold Atlantic water into the Mediterranean via the Strait of Gibraltar. Mediterranean surface water hydrography appears to have been most severely affected at Termination V during the H-type event Ht4, possibly as a response to a large volume of Atlantic meltwater inflow via the Strait of Gibraltar and/or to freshwater/terrigenous input deriving from local mountain glaciers. Three additional SST coolings are recorded through MIS 14-16, but these are not well correlated with Heinrich - type events documented in the Atlantic Ocean in the same interval; during these cooling episodes only the subpolar Turborotalita quinqueloba increases. These results highlight the sensitive response of the Mediterranean basin to millennial-scale climate variations related to Northern Hemisphere ice-sheet instability and support the hypothesis that the tight connection between high latitude climate dynamics and Mediterranean sea surface water features can be traced through the Middle Pleistocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organic petrologic (maceral analysis) and bulk organic-geochemical studies were performed on five sediment cores from the Eurasian continental margin to reconstruct the environmental changes during the last not, vert, similar13 000 yr. The core stratigraphy is based on AMS-14C dating, and correlation by magnetic susceptibility and lithostratigraphic characteristics. Variations in terrigenous, freshwater, and marine organic matter deposition document paleoceanographic and paleoclimatic changes during the transition from the last deglaciation to the Holocene. Glacigenic diamictons deposited in the St. Anna Trough (northern Kara Sea) during the Last Glacial Maximum (LGM) are characterized by reworked terrigenous organic matter. In contrast, the Laptev Sea shelf was not covered by an ice-sheet, but was exposed by the lowered sea level. Increased deposition of marine organic matter (MOM) during deglaciation indicates enhanced surface-water productivity, possibly related to influence of Atlantic waters. The occurrence of freshwater alginite gives evidence for river discharge to the Kara and Laptev Seas after the LGM. At the eastern Laptev Sea slope, the first influence of Atlantic water masses is indicated by an increase in the contents of MOM and dinoflagellate cysts, with Operculodinium centrocarpum prior to not, vert, similar10 000 yr BP. High sedimentation rates in the Kara and the Laptev Seas with the adjacent slope at the beginning of the Holocene are presumably related to increased freshwater and sediment discharge from the Siberian rivers. Evidence for elevated Holocene freshwater discharge to the Laptev Sea has been found between not, vert, similar9.8 and 9 kyr BP, at not, vert, similar5 kyr BP and at not, vert, similar2.5 kyr BP. In the Kara Sea, an increased freshwater signal is obvious at not, vert, similar8.5 kyr BP and at not, vert, similar5 kyr BP. Higher portions of MOM were accumulated in the St. Anna Trough and at the Eurasian continental margin at several intervals during the Holocene. Increased primary productivity during these intervals is explained by seasonally ice-free conditions possibly associated with increased inflow of Atlantic waters.