771 resultados para Late Glacial
Resumo:
A 200 m long marine pollen record from ODP Site 658 (21°N, 19°W) reveals cyclic fluctuations in vegetation and continental climate in northwestern Africa from 3.7 to 1.7 Ma. These cycles parallel oxygen isotope stages. Prior to 3.5 Ma, the distribution of tropical forests and mangrove swamps reached Cape Blanc, 5°N of the present distribution. Between 3.5 and 2.6 Ma, forests occurred at this latitude during irregular intervals and nearly disappeared afterwards. Likewise, a Saharan paleoriver flowed continuously until isotope Stage 134 (3.35 Ma). When river discharge ceased, wind transport of pollen grains prevailed over fluvial transport. Pollen indicators of trade winds gradually increased between 3.3 and 2.5 Ma. A strong aridification of the climate of northwestern Africa occurred during isotope Stage 130 (3.26 Ma). Afterwards, humid conditions reestablised followed by another aridification around 2.7 Ma. Repetitive latitudinal shifts of vegetation zones ranging from wooded savanna to desert flora dominated for the first time between between 2.6 and 2.4 Ma as a response to the glacial stages 104, 100 and 98. Although climatic conditions, recorded in the Pliocene, were not as dry as those of the middle and Late Pleistocene, latitudinal vegetation shifts near the end of the Pliocene resembled those of the interglacial-glacial cycles of the Brunhes chron.
Resumo:
In the sediments of the NW African continental margin the mainly biogenic carbonate constituents become increasingly diluted with terrigenous material as one approaches the coast, as indicated by the carbonate-CO2 content, the Al2O3/SiO2-ratios, and the presence of ammonia fixed to alumino-silicates, predominantly to illites. In the norther area of the investigation - off Cape Blanc and Cape Bojador . the terrigenous constituents are mainly quartz from the Sahara Desert, whereas in the south - off Senegal - more alumino-silicates as clay minerals are admixed with the carbonate constituents. The organic carbon content of the continental slope sediments off Senegal is higher than in samples of the continental rise or of the preservation of organic matter as a result of high production and relatively rapid sedimentation. The zone of manganese-oxide enrichment follows the redox potential of + 330 mV from the surface (0-5 cm) into the sediments (20-30 cm deep) at 2000--3000 m and 3700 m of water depths, respectively. At shallower water depths, low redox potentials preclude deposition of manganese oxides and cause their mobilization from the sediments. About 1/3 of the total sedimentary Zn and 1/4 of the Cu is associated with the carbonate mineral fraction, probably in calcium phosphate overgrowths as a result of the mineralization of phosphorus-containing organic matter. Besides the precipitation of calcium phosphate, the mineralization of organic matter mediated by bacterial sulfate reduction also results in calcium carbonate precipitation and the exchange of ammonia for potassium on illites. Because of these simultaneous reactions, the depth distribution of all mineralization constituents in the interstitial water can be determined using the actual molar carbon-to-nitrogen-to phosphorus ratios of the sedimentary organic matter. The amount of sulfide sulfur in this process indicates the predominance of bacterial sulfate reduction in the sediments off NW Africa. This process also preferentially decomposes nitrogen- and phosphorus-containing organic compounds so organic matter deficient in these elements is characteristic for the rapidly accumulating sediments than today, indicating there was increased production of organic carbon compounds and more favorable conditions of their preservations. During the last interglacial times conditions were similar to those to today. This differentiation with time has also been observed in sediments from the Argentine Basin and from slope off South India indicating perhaps world-wide environmental changes throughout Late Quaternary times.
Resumo:
Abundant and diverse polycystine radiolarian faunas from ODP Leg 181, Site 1123 (0-1.2 Ma at ~21 kyr resolution) and Site 1124 (0-0.6 Ma, ~5 kyr resolution, with a disconformity between 0.42-0.22 Ma) have been used to infer Pleistocene-Holocene paleoceanographic changes north of the Subtropical Front (STF), offshore eastern New Zealand, southwest Pacific. The abundance of warm-water taxa relative to cool-water taxa was used to determine a radiolarian paleotemperature index, the Subtropical (ST) Index. ST Index variations show strong covariance with benthic foraminifera oxygen isotope records from Site 1123 and exhibit similar patterns through Glacial-Interglacial (G-I) cycles of marine isotope stages (MIS) 15-1. At Site 1123, warm-water taxa peak in abundance during Interglacials (reaching ~8% of the total fauna). Within Glacials cool-water taxa increase to ~15% (MIS2) of the fauna. Changes in radiolarian assemblages at Site 1124 indicate similar but much better resolved trends through MIS15-12 and 7-1. Pronounced increases in warm-water taxa occur at the onset of Interglacials (reaching ~15% of the fauna), whereas the abundance of cool-water taxa increases in Glacials peaking in MIS2 (~17% of the fauna). Overall warmer conditions at Site 1124 during the last 600 kyrs indicate sustained influence of the subtropical, warm East Cape Current (ECC). During Interglacials radiolarian assemblages suggest an increase in marine productivity at both sites which might be due to predominance of micronutrient-rich Subtropical Water. At Site 1123, an increased abundance of deep-dwelling taxa in MIS 13 and 9 suggests enhanced vertical mixing. During Glacials, reduced vigour of ECC flow combined with northward expansion of cool, micronutrient-poor Subantarctic Water occurs. Only at Site 1123 there is evidence of a longitudinal shift of the STF, reaching as far north as 41°S.
Resumo:
Four long sediment cores from locations in the Framstrait, the Norwegian-Greenland Seas and the northern North Atlantic were analysed in a high resolution sampling mode (1 - 2 cm density) for their benthic foraminiferal content. In particular the impact of the intense climatic changes at glacial/interglacial transitions (terminations I and II) on the benthic community have been of special interest. The faunal data were investigated by means of multivariate analysis and represented in their chronological occurence. The most prominent species of benthic foraminifera in the Norwegian-Greenland Seas are Oridorsalis umbonatus, Cibicidoides wuellerstorfi, the group of Cassidulina, Pyrgo rotalaria, Globocassidulina subglobosa and fragmented tubes of arenaceous species. The climatic signal of termination I as well as termination II is recorded in the fossil foraminiferal tests as divided transition from glacial to interglacial. The elder INDAR maximum (individuals accumulation rate = individuals/sq cm * 1.000 y; Norwegian-Greenland Seas: average 3.000 - 6.000 individuals/sq cm * 1.000 y; northern North Atlantic: average 150 individuals/sq cm * 1.000 y) is followed by a period of decreased values. The second, younger maximum reaches comparable values as the elder maximum. The interglacial INDAR are in average 700 individuals/sq cm * 1.000 y in the Norwegian-Greenland Seas and 200 individuals/sq cm * 1.000 y in average in the northern North Atlantic. The occurence of the elder INDAR maximum shows a distinct chronological transgressivity between the northern North Atlantic (12.400 ybp.) and the Framstrait (8.900 ybp.). The time shift from south to north amounts 3.500 yrs., the average expanding velocity 0,78 km per year. Within the Norwegian-Greenland Seas the average expanding velocity amounts 0,48 km per year. This chronological transgressivity is interpreted as impact of the progressive expanding of the North Atlantic and the Norwegian Current during the deglaciation. The dynamic of the faunal development is defined as increasing INDAR per time. The elder INDAR maximum shows in both glacial/interglacial transitions an exponential increase from south to north. Termination II is characterized by a general higher dynamic as termination I. By means of the high resolution sampling density the impact of regional isotopic recognized melt-water events is recognized by an increase of endobenthic and t-ubiquitous species in the Norwegian-Greenland Seas sediments. During termination I the relative minimum between both INDAR maxima occur chronological with an decrease of calculated sea surface temperatures. This is interpreted as indication of the close pelagic - benthic coupling. The climatic signal in the northern North Atlantic recorded in the fossil benthic foraminiferal community shows a lower amplitude as in the Norwegian-Greenland Seas. The occurence of the epibenthic Cibicidoides wuellersforfi allows to evaluate the variability of the bottom water mass. In general at all core locations increasing lateral bottom currents are recognized with the occurence of the second younger INDAR maximum. In comparison with various paleo-climatological data sets fossil benthic foraminifers show a distinct koherence with changes of the atmospheric temperatures, the SSTs and the postglacial sea level increase. The benthic foraminiferal fauna is bound indirectly on and indicative for regional climatic changes, but principal dependent upon global climatic changes.
Resumo:
We examine rock-magnetic, carbonate, and planktonic foraminiferal fluxes to identify climatically controlled changes of terrigenous and pelagic sedimentation at Ocean Drilling Program (ODP) Site 646 (the Labrador Sea). Terrigenous sediments are brought to the site principally by bottom currents. We use a rock-magnetic parameter sensitive to changes in magnetic mineral grain size, the ratio of anhysteretic susceptibility to low-field magnetic susceptibility (XARM/X), to monitor changes in bottom-current intensity over time, with large values of XARM/X (finer-grained magnetic minerals) indicating weaker bottom currents. A second rock-magnetic parameter, magnetic mineral accumulation rate (KaT) was used to indicate variations in terrigenous flux. Planktonic foraminiferal and carbonate accumulation rates (Pfar and CaC03ar) are used as indicators of pelagic flux. Absolute age assignments are based on correlation between the planktonic foraminiferal oxygen-isotope variations for Site 646 and the SPECMAP master oxygen-isotope curve. Cross-correlation analyses of the parameters that we studied with respect to the SPECMAP curve suggest that from oxygen-isotope stages 21 to 11, sedimentation rate, KaT, X, CaCO3ar, and Pfar were at their maximums, whereas XARM/X was at its minimum during peak interglacials (i.e., 0 k.y. lag time with respect to minimum ice volume). However, all parameters we examined lag behind minimum ice volume from stages 11 to 1, indicating a change in timing of both pelagic and terrigenous fluxes at approximately 400 k.y. BP. The negative correlation coefficient between XARM/X and the SPECMAP curve further suggest that finer-grained magnetic minerals are deposited during glacial periods, which probably reflects weaker bottom currents. The shift observed in the lag times of parameters examined with respect to the SPECMAP record is attributed to a change in significance of orbital parameters. Spectral results exhibit strong power in eccentricity (about 100 k.y.) throughout the record. Kap X, CaCO3flr, and Pfar show significant power in obliquity (about 41 k.y.), whereas XARM/X shows significant power at 73 k.y. from stages 21 to 11. The 73-k.y. period in XARM/X is near the difference tone of obliquity and eccentricity: 1/43-1/102 = 1/69. Kar and XARM/X show power only in eccentricity from stages 11 to 1. X and Pfar show significant power in precession (about 18 and 22 k.y.) whereas CaC03ar has power at 34 k.y, which could be a combination of precession and obliquity. The shift in power of orbital parameters may by attributed to the effect of the about 413-k.y. signal of eccentricity.
Resumo:
We use quantitative X-ray diffraction to determine the mineralogy of late Quaternary marine sediments from the West and East Greenland shelves offshore from early Tertiary basalt outcrops. Despite the similar basalt outcrop area (60 000-70 000 km**2), there are significant differences between East and West Greenland sediments in the fraction of minerals (e.g. pyroxene) sourced from the basalt outcrops. We demonstrate the differences in the mineralogy between East and West Greenland marine sediments on three scales: (1) modern day, (2) late Quaternary inputs and (3) detailed down-core variations in 10 cores from the two margins. On the East Greenland Shelf (EGS), late Quaternary samples have an average quartz weight per cent of 6.2 ± 2.3 versus 12.8 ± 3.9 from the West Greenland Shelf (WGS), and 12.02 ± 4.8 versus 1.9 ± 2.3 wt% for pyroxene. K-means clustering indicated only 9% of the samples did not fit a simple EGS vs. WGS dichotomy. Sediments from the EGS and WGS are also isotopically distinct, with the EGS having higher eNd (-18 to 4) than those from the WGS (eNd = -25 to -35). We attribute the striking dichotomy in sediment composition to fundamentally different long-term Quaternary styles of glaciation on the two basalt outcrops.
Resumo:
The earliest Oligocene (~33.5 Ma) is marked by a major step in the long-term transition from an ice-free to glaciated world. The transition, characterized by both cooling and ice-sheet growth, triggered a transient but extreme glacial period designated Oi-1. High-resolution isotope records suggest that Oi-1 lasted for roughly 400,000 yr (the duration of magnetochron 13N) before partially abating, and that it was accompanied by an ocean-wide carbon isotope anomaly of 0.75?. One hypothesis relates the carbon isotope anomaly to enhanced export production brought about by climate-induced intensification of wind stress and upwelling, particularly in the Southern Ocean. To understand how this climatic event affected export production in the Southern Ocean, biogenic silica (opal) and carbonate accumulation rates were computed for the sub-polar Indian Ocean using deep-sea cores from ODP Site 744, Kerguelen Plateau. Our findings suggest that net productivity in this region increased by several fold in response to the Oi-1 glaciation. In addition, calcareous primary producers dominant in the Late Eocene were partially replaced by opaline organisms suggesting a trend toward seasonally greater surface divergence and upwelling in this sector of the Southern Ocean. We attribute these changes to intensification of atmospheric=oceanic circulation brought about by high-latitude cooling and the appearance of a full-scale continental ice-sheet on East Antarctica. Higher terrigenous sediment accumulation rates support the idea that wind-induced changes in regional productivity were augmented by an increased supply of glacial dust and debris that provided limiting micro-nutrients (e.g., iron-rich dust particles). We speculate that the rapid changes in biogenic sediment accumulation in the Southern Ocean and other upwelling-dominated regions contributed to the ocean-wide positive carbon isotope anomaly by temporarily increasing the burial rate of organic carbon relative to carbonate carbon. The changes in burial rates, in turn, may have produced a positive feedback on climate by briefly drawing down atmospheric pCO2 .
Resumo:
Data on the amount and composition of organic carbon were determined in sediment cores from the Kara and Laptev Sea continental margin, representing oxygen isotope stages 1-6. The characterization of organic matter is based on hydrogen index (HI) values, n-alkanes and maceral composition, indicating the predominance of terrigenous organic matter through space and time. The variations in the amount and composition of organic carbon are mainly influenced by changes in fluvial sediment supply, Atlantic water inflow, and continental ice sheets. During oxygen isotope stage (OIS) 6, high organic carbon contents in sediments from the Laptev Sea and western East Siberian Sea continental margin were probably caused by the increased glacial erosion and further transport in the eastward-flowing boundary current along the continental margin. During OIS 5 and early OIS 3, some increased amounts of marine organic matter were preserved in sediments east of the Lomonosov Ridge, suggesting an influence of nutrient-rich Pacific waters. During OIS 2, terrigenous organic carbon supply was increased along the Barents and western Kara Sea continental margin caused by extended continental ice sheets in the Barents Sea (Svalbard to Franz Josef Land) area and increased glacial erosion. Along the Laptev Sea continental margin, on the other hand, the supply of terrigenous (organic) matter was significantly reduced due to the lack of major ice sheets and reduced river discharge. Towards the Holocene, the amount of total organic carbon (TOC) increased along the Kara and Laptev Sea continental margin, reaching average values of up to 0.5 g C/cm**2/ky. Between about 8 and 10 ka (9 and 11 Cal ka), i.e., during times when the inner shallow Kara and Laptev seas became largely flooded for the first time after the Last Glacial Maximum, maximum supply of terrigenous organic carbon occurred, which is related to an increase in coastal erosion and Siberian river discharge. During the last 8000 years, the increased amount of marine organic carbon preserved in the sediments from the Kara and Laptev Sea continental margin is interpreted as a result of the intensification of Atlantic water inflow along the Eurasian continental margin.
Resumo:
A high-resolution study of palaeoenvironmental changes through the late Younger Dryas and early Holocene in the Skagerrak, the eastern North Atlantic, is based on multi-proxy analyses of core MD99-2286 combined with palaeo-water depth modelling for the area. The late Younger Dryas was characterized by a cold ice-distal benthic foraminiferal fauna. After the transition to the Preboreal (c. 11 650 cal. a BP) this fauna was replaced by a Cassidulina neoteretis dominated fauna, indicating the influence of chilled Atlantic Water at the sea floor. Persisting relatively cold bottom-water conditions until c. 10 300 cal. a BP are presumably a result of an outflow of glacial meltwater from the Baltic area across south-central Sweden, which develops a strong stratification of the water column at MD99-2286. A short-term peak in the C/N ratio at c. 10 200 cal. a BP is suggested to indicate input of terrestrial material, which may represent the drainage of an ice-dammed lake in southern Norway, the Glomma event. After the last drainage route across south-central Sweden closed, c. 10 300 cal. a BP, the meltwater influence diminished, and the Skagerrak resembled a fjord with stable inflow of waters from the North Atlantic through the Norwegian Channel and a gradual increase in boreal species. Full interglacial conditions were established at the sea floor from c. 9250 cal. a BP. Subsequent warm stable conditions were interrupted by a short-term cooling around 8300-8200 cal. a BP, representing the 8.2 ka event.
Resumo:
Planktonic foraminiferal test fragmentation in three cores along a depth transect from the western equatorial Pacific (ERDC-93P, 1619 m; RC17-177, 2600 m; V28-238, 3120 m [Thompson, 1976]) were examined for the last 500 kyr at sample intervals from 2.5 to 5 kyr to study the fluctuations of dissolution in the western equatorial Pacific. The age models were constructed by correlating the delta18O records with the SPECMAP stack [Imbrie et al., 1984]. Results showed that intermediate and deep waters experienced the same patterns of dissolution through climatic cycles. Fragmentation varied with a greater amplitude, and the carbonate ion concentration changed less, in the deep than in the intermediate water. Dissolution has significant variance distributions and coherencies with delta18O over the 100, 41, and 23 kyr periods of orbital variations; dissolution maxima lag ice volume minima by 6 to 20 kyr. The dissolution variability was consistent with recent geochemical models which seek to explain the reduction of atmospheric CO2 concentration at the last glacial maximum [Broecker, 1982; Boyle, 1988].
Resumo:
We compare a compilation of 220 sediment core d13C data from the glacial Atlantic Ocean with three-dimensional ocean circulation simulations including a marine carbon cycle model. The carbon cycle model employs circulation fields which were derived from previous climate simulations. All sediment data have been thoroughly quality controlled, focusing on epibenthic foraminiferal species (such as Cibicidoides wuellerstorfi or Planulina ariminensis) to improve the comparability of model and sediment core carbon isotopes. The model captures the general d13C pattern indicated by present-day water column data and Late Holocene sediment cores but underestimates intermediate and deep water values in the South Atlantic. The best agreement with glacial reconstructions is obtained for a model scenario with an altered freshwater balance in the Southern Ocean that mimics enhanced northward sea ice export and melting away from the zone of sea ice production. This results in a shoaled and weakened North Atlantic Deep Water flow and intensified Antarctic Bottom Water export, hence confirming previous reconstructions from paleoproxy records. Moreover, the modeled abyssal ocean is very cold and very saline, which is in line with other proxy data evidence.
Resumo:
At least two modes of glacial-interglacial climate change have existed within the tropical Atlantic Ocean during the last 20,000 years. The first mode (defined by cold glacial and warm interglacial conditions) occurred symmetrically north and south of the equator and dominated the eastern boundary currents and tropical upwelling areas. This pattern suggests that mode 1 is driven by a glacial modification of surface winds in both hemispheres. The second mode of oceanic climate change, defined by temperature extremes centered on the deglaciation, was hemispherically asymmetrical, with the northern tropical Atlantic relatively cold and the southern tropical Atlantic relatively warm during deglaciation. A likely cause for this pattern of variation is a reduction of the presently northward cross-equatorial heat flux during deglaciation. No single mechanism accounts for all the data. Potential contributors to oceanic climate changes are linkage to high-latitude climates, modification of monsoonal winds by ice sheet and/or insolation changes, atmospheric CO2 and greenhouse effects, indirect effects of glacial meltwater, and variations in thermohaline overturn of the oceans.
Resumo:
Circum-Antarctic sediment thickness grids provide constraints for basin evolution and paleotopographic reconstructions, which are important for paleo-ice sheet formation histories. By compiling old and new seismic data, we identify sequences representing pre-glacial, transitional and full glacial deposition processes along the Pacific margin of West Antarctica. The pre-glacial sediment grid depicts 1.3 to 4.0 km thick depocenters, relatively evenly distributed along the margin. The depocenters change markedly in the transitional phase at, or after, the Eocene/Oligocene boundary, when the first major ice sheets reached the shelf. Full glacial sequences, starting in the middle Miocene, indicate new depocenter formation North of the Amundsen Sea Embayment and localized eastward shifts in the Bellingshausen Sea and Antarctic Peninsula basins. Using present-day drainage paths and source areas on the continent, our calculations indicate an estimated observed total sedimentary volume of ~10 x 10**6 km**3 was eroded from West Antarctica since the separation of New Zealand in the Late Cretaceous. Of this 4.9 x 10**6 km**3 predates the onset of glaciation and need to be considered for a paleotopography reconstruction of 34 Ma. Whereas 5.1 x 10**6 km**3 postdate the onset of glaciation, of which 2.5 x 10**6 km**3 were deposited in post mid-Miocene full glacial conditions.
Resumo:
Site 532 on the Walvis Ridge was sampled at 4000- to 800-year intervals from 2.24 to 2.60 Ma, spanning the three large glacial advances of the late Pliocene. An age model was created by correlating the oxygen isotope record to Site 607 with linear interpolations between tie-lines. The resultant age model differs from that in the site reports by more than 800,000 years, due to misidentification of a magnetic boundary. Sedimentation rates varied by an order of magnitude at this site, with minimum accumulation during glacial events. Interglacial intervals were charactrized by high marine production and high summer precipitation on land, while glacials had very low production and arid continental climate. During the large glacial events (Stages 96-100) conditions of low production and continental aridity reached their greatest intensity, but there is no evidence of a permanent mode shift in either marine or terrestrial records. Calcite concentration has a strong variation at obliquity frequencies, with maxima during interglacials, but occasionally shows a large amplitude at precessional frequencies as well, so that high concentrations occur in a few glacial intervals. As a result, color variation is not a reliable guide to glacial-scale cycles at this site. Composition of the phytoplankton assemblage is diverse and highly variable, and we have not been able to distinguish a clear indicator of upwelling-related production. Spectral analysis reveals obliquity and precessional signals in the pollen data, while several diatom records contain combination tones, indicating that these data represent a complicated response to both local and high-latitude forcing.