176 resultados para spatial-temporal constraints
Chemical composition and isotopic ratios of basic lavas from Iceland and the surrounding ocean floor
Resumo:
Major and trace dement data are used to establish the nature and extent of spatial and temporal chemical variations in basalts erupted in the Iceland region of the North Atlantic Ocean. The ocean floor samples are those recovered by legs 38 and 49 of the Deep Sea Drilling Project. Within each of the active zones on Iceland there are small scale variations in the light rare earth elements and ratios such as K/Y: several central complexes and their associated fissure swarms erupt basalts with values of K/Y distinct from those erupted at adjacent centres; also basalts showing a wide range of immobile trace element ratios occur together within single vertical sections and ocean floor drill holes. Although such variations can be explained in terms of the magmatic processes operating on Iceland they make extrapolations from single basalt samples to mantle sources underlying the outcrop of the sample highly tenuous. 87Sr/86Sr ratios measured for 25 of the samples indicate a total range from 0.7028 in a tholeiite from the Reykjanes Ridge to 0.7034 in an alkali basalt from Iceland and are consistent with other published ratios from the region. A positive correlation between 87Sr/86Sr and Ce/Yb ratios indicates the existence of systematic isotopic and elemental variations in the mantle source region. An approximately fivefold variation in Ce/Yb ratio observed in basalts with the same 87Sr/86Sr ratio implies that different degrees and types of partial melting have been involved in magma genesis from a single mantle composition. 87Sr/86Sr ratios above 0.7028, Th/U ratios close to 4 and La/Ta ratios close to 10 distinguish most basalts erupted in this part of the North Atlantic Ocean from normal mid-ocean ridge basalt (N-type MORB) - although N-type MORB has been erupted at extinct spreading axes just to the north and northeast of Iceland as well as the presently active Iceland-Jan Mayen Ridge. Comparisons with the hygromagmatophile element and radiogenic isotope ratios of MORB and the estimated primordial mantle indicate that the mantle sources producing Iceland basalts have undergone previous depletion followed by more recent enrichment events. A veined mantle source region is proposed in preference to the mantle plume model to explain the chemical variations.
Resumo:
Flux of siliceous plankton and taxonomic composition of diatom and silicoflagellate assemblages were determined from sediment trap samples collected in coastal upwelling-influenced waters off northern Chile (30°S, CH site) under "normal" or non-El Niño (1993-94) and El Niño conditions (1997-98). In addition, concentration of biogenic opal and siliceous plankton, and diatom and silicoflagellate assemblages preserved in surface sediments are provided for a wide area between 27° and 43°S off Chile. Regardless of the year, winter upwelling determines the maximum production pattern of siliceous microorganisms, with diatoms numerically dominating the biogenic opal flux. During the El Niño year the export is markedly lower: on an annual basis, total mass flux diminished by 60%, and diatom and silicoflagellate export by 75%. Major components of the diatom flora maintain much of their regular seasonal cycle of flux maxima and minima during both sampling periods. Neritic resting spores (RS) of Chaetoceros dominate the diatom flux, mirroring the influence of coastal-upwelled waters at the CH trap site. Occurrence of pelagic diatoms species Fragilariopsis doliolus, members of the Rhizosoleniaceae, Azpeitia spp. and Nitzschia interruptestriata, secondary components of the assemblage, reflects the intermingling of warmer waters of the Subtropical Gyre. Dictyocha messanensis dominates the silicoflagellate association almost year-around, but Distephanus pulchra delivers ca. 60% of its annual production in less than three weeks during the winter peak. The siliceous thanatocoenosis is largely dominated by diatoms, whose assemblage shows significant qualitative and quantitative variations from north to south. Between 27° and 35°S, the dominance of RS Chaetoceros, Thalassionema nitzschioides var. nitzschioides and Skeletonema costatum reflects strong export production associated with occurrence of coastal upwelling. Both highest biogenic opal content and diatom concentration at 35° and 41°-43°S coincide with highest pigment concentrations along the Chilean coast. Predominance of the diatom species Thalassiosira pacifica and T. poro-irregulata, and higher relative contribution of the silicoflagellate Distephanus speculum at 41°-43°S suggest the influence of more nutrient-rich waters and low sea surface temperatures, probably associated with the Antarctic Circumpolar Water.
Resumo:
The Indo-Pacific Warm Pool (IPWP) is a key site for the global hydrologic cycle, and modern observations indicate that both the Indian Ocean Zonal Mode (IOZM) and the El Niño Southern Oscillation exert strong influence on its regional hydrologic characteristics. Detailed insight into the natural range of IPWP dynamics and underlying climate mechanisms is, however, limited by the spatial and temporal coverage of climate data. In particular, long-term (multimillennial) precipitation patterns of the western IPWP, a key location for IOZM dynamics, are poorly understood. To help rectify this, we have reconstructed rainfall changes over Northwest Sumatra (western IPWP, Indian Ocean) throughout the past 24,000 y based on the stable hydrogen and carbon isotopic compositions (dD and d13C, respectively) of terrestrial plant waxes. As a general feature of western IPWP hydrology, our data suggest similar rainfall amounts during the Last Glacial Maximum and the Holocene, contradicting previous claims that precipitation increased across the IPWP in response to deglacial changes in sea level and/or the position of the Intertropical Convergence Zone. We attribute this discrepancy to regional differences in topography and different responses to glacioeustatically forced changes in coastline position within the continental IPWP. During the Holocene, our data indicate considerable variations in rainfall amount. Comparison of our isotope time series to paleoclimate records from the Indian Ocean realm reveals previously unrecognized fluctuations of the Indian Ocean precipitation dipole during the Holocene, indicating that oscillations of the IOZM mean state have been a constituent of western IPWP rainfall over the past ten thousand years.
Resumo:
Seamounts are of great interest to science, industry and conservation because of their potential role as 'stirring rods' of the oceans, their enhanced productivity, their high local biodiversity, and the growing exploitation of their natural resources. This is accompanied by rising concern about the threats to seamount ecosystems, e.g. through over-fishing and the impact of trawling. OASIS described the functioning characteristics of seamount ecosystems. OASIS' integrated hydrographic, biogeochemical and biological information. Based on two case studies. The scientific results, condensed in conceptual and mass balanced ecosystem models, were applied to outline a model management plan as well as site-specific management plans for the seamounts investigated. OASIS addressed five main objectives: Objective 1: To identify and describe the physical forcing mechanisms effecting seamount systems Objective 2: To assess the origin, quality and dynamics of particulate organic material within the water column and surface sediment at seamounts. Objective 3: To describe aspects of the biodiversity and the ecology of seamount biota, to assess their dynamics and the maintenance of their production. Objective 4: Modelling the trophic ecology of seamount ecosystems. Objective 5: Application of scientific knowledge to practical conservation.
Resumo:
As a result of intensive field activities carried out by several nations over the past 15 years, a set of accumulation measurements for western Dronning Maud Land, Antarctica, was collected, based on firn-core drilling and snow-pit sampling. This new information was supplemented by earlier data taken from the literature, resulting in 111 accumulation values. Using Geographical Information Systems software, a first region-wide mean annual snow-accumulation field was derived. In order to define suitable interpolation criteria, the accumulation records were analyzed with respect to their spatial autocorrelation and statistical properties. The resulting accumulation pattern resembles well known characteristics such as a relatively wet coastal area with a sharp transition to the dry interior, but also reveals complex topographic effects. Furthermore, this work identifies new high-return shallow drilling sites by uncovering areas of insufficient sampling density.
Resumo:
Chemical and isotopic (Nd and Sr) compositions have been determined for 12 Cretaceous basaltic samples (108 Ma old) from Holes 417D and 418A of Legs 51,52 and 53. We have found that: (1) The chemical compositions are typical of MORB. They do not vary systematically with the stratigraphic positions of the analyzed samples; thus, the chemical evolution is independent of the eruption sequence that occurred at this Cretaceous ridge. (2) REE patterns for all rocks are characterized by a strong LREE depletion with (La/Sm)N = 0.38-0.50; no significant Eu anomalies are found; HREE are nearly flat or slightly depleted towards Yb-Lu and have 12-18 * chondritic abundances. Combining the results of previous studies, it suggests that no significant temporal and spatial variation in magma chemistry (especially for LIL elements) has occurred in the 'normal' ridge segments over the last 150 Ma. (3) lsotopically, 143Nd/144Nd ratios vary from 0.513026 to 0.513154, corresponding to epsilon-Nd(0) = +7.5 to +10, and they fall in the typical range of MORB. However, these rocks have unexpectedly high 87Sr/86Sr ratios (0.70355-0.70470) which are attributed to the result of seawater-rock interaction. (4) The Nd model ages (Tin), ranging from 1.53 to 2.47 (average 2.06) AE, suggest that the upper mantle source(s) underwent a large scale chemical differentiation leading to LREE and other LIL element depletion about 2 AE ago, assuming a simple two-stage model. More realistically, the variation in Tm(Nd) or epsilon-Nd could be derived from mixing of heterogeneous mantle sources that were a consequence of continuous mantle differentiation and continental formation. (5) Because of the low mg values (0.52-0.63), the analyzed basaltic rocks do not represent primary liquids of mantle melting. The variation in La/Sm ratios and TiO2 are not compatible with a model in which all rocks are genetically related by a simple fractional crystallization. Rather, it is proposed that the basaltic rocks might have been derived from some heterogeneous upper mantle source with or without later magmatic mixing, and followed by some shallow-level fraetionations.
Resumo:
The South Shetland Islands are located at the northern tip of the AP which is among the fastest warming regions on Earth. The islands are especially vulnerable to climate change due to their exposure to transient low-pressure systems and their maritime climate. Surface air temperature increases (2.5K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. We have compiled a unique meteorological data set for the King George Island (KGI)/Isla 25 de Mayo, the largest of the South Shetland Islands. It comprises high-temporal resolution and spatially distributed observations of surface air temperature, wind directions and wind velocities, as well as glacier ice temperatures in profile with a fully equipped automatic weather station on the Warszawa Icefield, from November 2010 and ongoing. In combination with two long-term synoptic datasets (40 and 10 years, respectively) and NCEP/NCAR reanalysis data, we have looked at changes in the climatological drivers of the glacial melt processes, and the sensitivity of the inland ice cap with regard to winter melting periods and pressure anomalies. The analysis has revealed, a positive trend of 5K over four decades in minimum surface air temperatures for winter months, clearly exceeding the published annual mean statistics, associated to a decrease in mean monthly winter sea level pressure. This concurs with a positive trend in the Southern Annular Mode (SAM) index, which gives a measure for the strength and extension of the Antarctic vortex. We connect this trend with a higher frequency of low-pressure systems hitting the South Shetland Islands during austral winter, bringing warm and moist air masses from lower latitudes. Due to its exposure to the impact of transient synoptic weather systems, the ice cap of KGI is especially vulnerable to changes during winter glacial mass accumulation period. A revision of seasonal changes in adiabatic air temperature lapse rates and their dependency on exposure and elevation has shown a clear decoupling of atmospheric surface layers between coastal areas and the higher-elevation ice cap, showing the higher sensitivity to free atmospheric flow and synoptic changes. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0K/100 m), and a distinct spatial variability reflecting the impact of synoptic weather patterns. The observed advective conditions bringing warm, moist air with high temperatures and rain, lead to melt conditions on the ice cap, fixating surface air temperatures to the melting point. This paper assesses the impact of large-scale atmospheric circulation variability and climatic changes on the atmospheric surface layer and glacier mass accumulation of the upper ice cap during winter season for the Warszawa Icefield on KGI.
Resumo:
Because zooplankton feces represent a potentially important transport pathway of surface-derived organic carbon in the ocean, we must understand the patterns of fecal pellet abundance and carbon mobilization over a variety of spatial and temporal scales. To assess depth-specific water column variations of fecal pellets on a seasonal scale, vertical fluxes of zooplankton fecal pellets were quantified and their contribution to mass and particulate carbon were computed during 1990 at 200, 500, 1000, and 2000 m depths in the open northwestern Mediterranean Sea as part of the French-JGOFS DYFAMED Program. Depth-averaged daily fecal pellet flux was temporally variable, ranging from 3.04 * 10**4 pellets m**2/d in May to a low of 6.98 * 10**2 pellets m**2/d in September. The peak flux accounted for 50% of the integrated annual flux of fecal pellets and 62% of pellet carbon during only two months in mid-spring (April and May). Highest numerical fluxes were encountered at 1000 m, suggesting fecal pellet generation well below the euphotic zone. However, there was a trend toward lower pellet carbon with increasing depth, suggesting bacterial degradation or in situ repackaging as pellets sink through the water column. At 500 m, both the lowest pellet numerical abundance and carbon flux were evident during the spring peak. Combined with data indicating that numerical and carbon fluxes are dominated at 500 m by a distinct type of pellet found uniquely at this depth, these trends suggest the presence of an undescribed mid-water macro-zooplankton or micro-nekton community. Fecal pellet carbon flux was highest at 200 m and varied with depth independently of overall particulate carbon, which was greatest at 500 m. Morphologically distinct types of pellets dominated the numerical and carbon fluxes. Small elliptical and spherical pellets accounted for 88% of the numerical flux, while larger cylindrical pellets, although relatively rare (<10%), accounted for almost 40% of the overall pellet carbon flux. Cylindrical pellets dominated the pellet carbon flux at all depths except 500 m, where a large subtype of elliptical pellet, found only at that depth, was responsible for the majority of pellet carbon flux. Overall during 1990, fecal pellets were responsible for a depth-integrated annual average flux of 1.03 mgC/m**2/d, representing 18% of the total carbon flux. The proportion of vertical carbon flux attributed to fecal pellets varied from 3 to 35%, with higher values occurring during periods when the water column was vertically mixed. Especially during these times, fecal pellets are a critical conveyor of carbon to the deep sea in this region.