699 resultados para Chl
Resumo:
This study focuses on sedimentological investigations of sediment cores recovered during the international Arctic'91, expeditions with the German research ice breaker RV "Polarstern" to the European sector of the Arctic Ocean. Here, we deduce the last glacial/interglacial changes in transport mechanism and sedimentation from the clay mineral group smectite. We choose the smectites as an example of how sediment mineralogy can be linked with particular source regions (the Kara and Laptev seas), distinct transport mechanism (sea ice and surface currents) and sedimentation processes. Smectite contents in Arctic sediments discussed for two time slices, including the Last Glacial Maximum (LGM), and the last deglaciation (Termination I), reveal the highest variability subsequent to the retreat of the Eurasian ice sheets. Our results show that smectite anomalies in the Eurasian Basin are associated with distinct meltwater pulses and occurred around 13.5-13.0 14C ka B.P. Compelling evidence is provided that these anomalies are deduced from sea-ice entrained sediments from the eastern Kara Sea that entered the Arctic Ocean after ice-sheet break-up and eventually flooding of the Kara Sea. We propose that smectite anomalies in sediments of the eastern Arctic Ocean can be utilized to identify deglacial events and to help decipher configurations of the Eurasian ice sheets. The identification of smectite maxima along the modern sea-ice edge in the Eurasian Basin further indicates biologically enhanced sedimentation from melting sea ice allowing the reconstruction of seasonally open water in the region. Hence, considering the poor preservation conditions of primary paleoceanographic proxies in the Arctic Ocean, the clay mineral contents, particularly the smectite group, may be one alternative tool for paleoclimatic reconstruction in the Eurasian Basin.
Resumo:
Drill core recovered at Ocean Drilling Program Site 808 (Leg 131) proves that the wedge of trench sediment within the central region of the Nankai Trough comprises approximately 600 m of hemipelagic mud, sandy turbidites, and silty turbidites. The stratigraphic succession thickens and coarsens upward, with hemipelagic muds and volcanic-ash layers of the Shikoku Basin overlain by silty and sandy trench-wedge deposits. Past investigations of clay mineralogy and sand petrography within this region have led to the hypothesis that most of the detritus in the Nankai Trough was derived from the Izu-Honshu collision zone and transported southwestward via axial turbidity currents. Shipboard analyses of paleocurrent indicators, on the other hand, show that most of the ripple cross-laminae within silty turbidites of the outer marginal trench-wedge facies are inclined to the north and northwest; thus, many of the turbidity currents reflected off the seaward slope of the trench rather than moving straight down the trench axis. Shore-based analyses of detrital clay minerals demonstrate that the hemipelagic muds and matrix materials within sandy and silty turbidites are all enriched in illite; chlorite is the second-most abundant clay mineral, followed by smectite. In general, the relative mineral percentages change relatively little as a function of depth, and the hemipelagic clay-mineral population is virtually identical to the turbidite-matrix population. Comparisons between different size fractions (<2 µm and 2-6 µm) show modest amounts of mineral partitioning, with chlorite content increasing in the coarser fraction and smectite increasing in the finer fraction. Values of illite crystallinity index are consistent with conditions of advanced anchimetamorphism and epimetamorphism within the source region. Of the three mica polytypes detected, the 2M1 variety dominates over the 1M and 1Md polytypes; these data are consistent with values of illite crystallinity. Measurements of mica bo lattice spacing show that the detrital illite particles were eroded from a zone of intermediate-pressure metamorphism. Collectively, these data provide an excellent match with the lithologic and metamorphic character of the Izu-Honshu collision zone. Data from Leg 131, therefore, confirm the earlier interpretations of detrital provenance. The regional pattern of sediment dispersal is dominated by a combination of southwest-directed axial turbidity currents, radial expansion of the axial flows, oblique movement of suspended clouds onto and beyond the seaward slope of the Nankai Trough, and flow reflection back toward the trench axis.
Resumo:
With the examination of multinet catches (63 µm mesh size), the present study analyzes the distribution of planktonic foraminifera in Polar regions: the Labrador Sea, Greenland Sea at 75°N and Fram Strait at 80°N. The community of the planktonic foraminifera, which in the study area mainly consists of six species: left and right-coiling N. pachyderma, T. quinqueloba, G. bulloides, G. glutinata and G. uvula, is primarily controlled by the temperature in the different water masses. Besides hydrographic parameters, the changes in the horizontal and vertical distribution of N. pachyderma (s.) and T. quinqueloba as well as their shell size distribution in the study area are primarily influenced by the synchrone reproduction, which is coupled to the lunar cycle. Detailed examinations of the isotope signal in dependency on the shell size and weight for N. pachyderma (s.) and T. quinqueloba from plankton tows, indicated the weight or degree of calcification to not be the primary factor controlling the isotope signal of encrusted specimens.The d18O vital effect is primarily caused by the thermal stratification of the water column, whereas the d13C vital effect mainly results from the ontogenetic development.
Resumo:
The Arctic Ocean System is a key player regarding the climatic changes of Earth. Its highly sensitive ice Cover, the exchange of surface and deep water masses with the global ocean and the coupling with the atmosphere interact directly with global climatic changes. The output of cold, polar water and sea ice influences the production of deep water in the North Atlantic and controls the global ocean circulation ("the conveyor belt"). The Arctic Ocean is surrounded by the large Northern Hemisphere ice sheets which not only affect the sedimentation in the Arctic Ocean but also are supposed to induce the Course of glacials and interglacials. Terrigenous sediment delivered from the ice sheets by icebergs and meltwater as well as through sea ice are major components of Arctic Ocean sediments. Hence, the terrigenous content of Arctic Ocean sediments is an outstanding archive to investigate changes in the paleoenvironment. Glazigenic sediments of the Canadian Arctic Archipelago and surface samples of the Arctic Ocean and the Siberian shelf regions were investigated by means of x-ray diffraction of the bulk fraction. The source regions of distinct mineral compositions were to be deciphered. Regarding the complex circumpolar geology stable christalline shield rocks, active and ancient fold belts including magmatic and metamorphic rocks, sedimentary rocks and wide periglacial lowlands with permafrost provide a complete range of possible mineral combinations. Non- glaciated shelf regions mix the local input from a possible point source of a particular mineral combination with the whole shelf material and function as a sampler of the entire region draining to the shelf. To take this into account, a literature research was performed. Descriptions of outcropping lithologies and Arctic Ocean sediments were scanned for their mineral association. The analyses of glazigenic and shelf sediments yielded a close relationship between their mineral composition and the adjacent source region. The most striking difference between the circumpolar source regions is the extensive outcrop of carbonate rocks in the vicinity of the Canadian Arctic Archipelago and in N Greenland while siliciclastic sediments dominate the Siberian shelves. In the Siberian shelf region the eastern Kara Sea and the western Laptev Sea form a destinct region defined by high smectite, (clino-) pyroxene and plagioclase input. The source of this signal are the extensive outcrops of the Siberian trap basalt in the Putorana Plateau which is drained by the tributaries of the Yenissei and Khatanga. The eastern Laptev Sea and the East Siberian Sea can also be treated as one source region containing a feldspar, quartz, illite, mica, and chlorite asscciation combined with the trace minerals hornblende and epidote. Franz Josef Land provides a mineral composition rich in quartz and kaolinite. The diverse rock suite of the Svalbard archipelago distributes specific mineral compositions of highly metamorphic christalline rocks, dolomite-rich carbonate rocks and sedimentary rocks with a higher diagenetic potential manifested in stable newly built diagenetic minerals and high organic maturity. To reconstruct the last 30,000 years as an example of the transition between glacial and interglacial conditions a profile of sediment cores, recovered during the RV Polarstern" expedition ARK-VIIIl3 (ARCTIC '91), and additional sediment cores around Svalbard were investigated. Besides the mineralogy of different grain size fractions several additional sedimentological and organo-geochemical Parameterswere used. A detailed stratigraphic framework was achieved. By exploiting this data set changes in the mineral composition of the Eurasian Basin sediments can be related to climatic changes. Certain mineral compositions can even be associated with particular transport processes, e.g. the smectitel pyroxene association with sea ice transport from the eastern Kara Sea and the western Laptev Sea. Hence, it is possible to decipher the complex interplay between the influx of warm Atlantic waters into the Southwest of the Eurasian Basin, the waxing and waning of the Svalbard1Barents- Sea- and Kara-Sea-Ice-Sheets, the flooding of the Siberian shelf regions and the surface and deep water circulation. Until now the Arctic Ocean was assumed to be a rather stable System during the last 30,000 years which only switched from a completely ice covered situation during the glacial to seasonally Open waters during the interglacial. But this work using mineral assemblages of sediment cores in the vicinity of Svalbard revealed fast changes in the inflow of warm Atlantic water with the Westspitsbergen Current (< 1000 years), short periods of advances and retreats of the marine based Eurasian ice sheets (1000-3000 years), and short melting phases (400 years?). Deglaciation of the marine-based Eurasian and the land-based north American and Greenland ice sheets are not simultaneous. This thesis postulates that the Kara Sea Ice Sheet released an early meltwater signal prior to 15,000 14C years leading the Barents Sea Ice Sheet while the western land-based ice sheets are following later than 13,500 14C years. The northern Eurasian Basin records the shift between iceberg and sea-ice material derived from the Canadian Arctic Archipelago and N-Greenland and material transported by sea-ice and surface currents from the Siberian shelf region. The phasing of the deglaciation becomes very obvious using the dolomite and quartd phyllosilicate record. It is also supposed that the flooding of the Laptev Sea during the Holocene is manifested in a stepwise increase of sediment input at the Lomonosov Ridge between the Eurasian and Amerasian Basin. Depending on the strength of meltwater pulses from the adjacent ice sheets the Transpolar Drift can probably be relocated. These movements are traceable by the distribution of indicator minerals. Based on the outcome of this work the feasibility of bulk mineral determination can be qualified as excellent tool for paleoenvironmental reconstructions in the Arctic Ocean. The easy preparation and objective determination of bulk mineralogy provided by the QUAX software bears the potential to use this analyses as basic measuring method preceding more time consuming and highly specialised mineralogical investigations (e.g. clay mineralogy, heavy mineral determination).
Resumo:
Die Rekonstruktion der glaziomarinen Sedimentationsprozesse am antarktischen Kontinentalrand des westlichen Bellingshausenmeeres erfolgte durch die sedimentologische Auswertung eines 962 cm langen Schwerelotkernes aus 3594 m Wassertiefe. Der Kern wurde während des Fahrtabschnittes ANT-XI/3 mit dem FS "Polarstern" vom Scheitel einer Sediment- "Drift" gezogen. An dem Sedimentkern wurde eine lithologische Beschreibung, sowie sedimentologische Untersuchungen und sedimentphysikalische Messungen durchgeführt. Anhand der Ergebnisse konnten signifikante Änderungen in der Zusammensetzung und Struktur der Sedimente erkannt, und drei Faziestypen unterschieden werden. Die Faziestypen charakterisieren jeweils glaziale oder interglaziale Zeiträume. Der größte Teil der Sedimentabfolge gehört der Laminitfazies an. Dabei handelt es sich um feinlaminierte Sedimentabschnitte, die vorwiegend aus feinkörnigen, terrigenen Komponenten zusammengesetzt sind. In die feinlaminierten Abschnitte sind vereinzelte, wenige Milimeter bis Zentimeter mächtige Siltlagen eingeschaltet. Die biogenen Anteile sind gering, Anzeichen für Bodenleben fehlen völlig. Die Manganfazies wird von authigen gebildeten Mangankonkretionen dominiert, die jeweils diskrete Lagen bilden. Dabei handelt es sich zum einen um Mikromanganknollen und -krusten und zum andern um manganhaltige Gangfüllungen. Biogene und terrigene Anteile sind in diesem Faziestyp unbedeutend. Die Biogenfazies ist von strukturlosen und stark bioturbierten Sedimenten gekennzeichnet. In diesen Sedimentabschnitten ist der hohe Anteil an Eisfracht (IRD) und die erhöhten Gehalte an Kalziumkarbonat und Opal in der Sandfraktion markant. Die stratigraphische Einordnung des Sedimentkernes erfolgte über die von Grobe & Mackensen (1992) entwickelte Lithostratigraphie, mit deren Einheiten die Faziestypen des Sedimentkernes korreliert werden konnten. Dabei ergaben sich zwei mögliche Altersmodelle und ein Basisalter von ca. 250.000 Jahren. Anhand der stratigraphischen Fixpunkte wurden Sedimentationsraten des Gesamtsedimentes und Akkumulationsraten des Kalziumkarbonates, des Biogenopals und des organisch gebundenen Kohlenstoffes berechnet. Dabei wurde gezeigt, daß lediglich das Kalziumkarbonat und der Biogenopal als Anzeiger für biologische Produktion dienen können, wobei Lösungsprozesse in der Wassersäule und im Sediment eine große Rolle spielen. Der Gehalt an organisch gebundenem Kohlenstoff ist in dem Sedimentkern nur erhaltungsbedingt zu erklären. Die Sedimentationsprozesse der einzelnen Faziestypen sind von den Eisverhältnissen, der biologischen Produktion, dem gravitativen Transport und der Umlagerung durch Meeresströmungen abhängig. Die Auswirkung der einzelnen Faktoren ist jeweils unterschiedlich ausgeprägt und wirkt sich spezifisch auf die einzelnen Parameter aus. In den Glazialen hatte ein Vorstoß des Schelfeises über die Schelfkante zur Anlieferung großer Sedimentmassen geführt, die über gravitativen Transport den Kontinentalhang hinunter transportiert wurden. Die Feinfracht wurde über parallel zum Kontinentalhang laufende Konturströme westwärts transportiert und in der Larninitfazies der Driftkörper abgelagert. Am Ende der Glaziale kam es zur Sedimentation der Manganfazies. Die geringen Sedimentationsraten am Kamm der Sedimentdrift kamen aufgrund reduzierter Intensität der Konturströme und fehlender Umlagerung von Schelfsedimenten in Folge rückschreitender Schelfeisrnassen zustande. In den Interglazialen kam es durch den aufsteigenden Meeresspiegel zum Aufschwimmen des Schelfeises. Der damit verbundene Abbau der Eisrnassen über dem Schelf, hatte eine hohe Sedimentation von IRD zur Folge. Mit fortschreitendem Interglazial kam es in Zeiten nur saisonaler Meereisbedeckung zu verstärkter biologischer Produktion und zur Sedimentation biogenen Materials.
Resumo:
The grain size distribution and clay mineral composition of lithogenic particles of ice-rafted material, sinking matter, surface sediments, as well as from deep-sea cores are analysed. The samples were collected in the Fram Strait, the Arctic Ocean, and the Norwegian Sea during several expeditions with the research vessels "Polarstern", "Meteor" and "Poseidon", and Norwegian rearch vessels. Sinking matter was caught with sediment traps, fitted with timer-controlled sample changers, which had been deployde in the sea for usually one year.
Resumo:
Distinct facies types, classified in radiocarbon-dated sediments from the shelf of the Lazarev Sea, East Antarctica, reveal a detailed history of processes that have controlled sedimentation during the deglaciation over the last 10,000 yr. The ice retreat on this part of the Antarctic shelf started 9500 yr BP, marked by the deposition of laminated sediments, deposited from a floating ice shelf. These laminites, which occur on top of diamictons laid down from a grounded ice sheet, are the basal sediments of the postglacial sequence. The intensity of the Antarctic Coastal Current (ACC), directed by shelf morphology, controlled sedimentation of the postglacial facies. A residual glaciomarine sediment with the fine fraction winnowed by strong currents developed from 9000-8000 yr BP in the western part of the investigation area and from 9000-5000 yr BP in the eastern part, closer to the prominent 'Fenno Deep' trough. Current velocities apparently decreased between 8000 and 2000 yr BP due to a deflection of the ACC by advancing ice tongues to the east of the investigation area during the 'Hypsithermal'. This led to a deposition of fine-grained sediments, and clay mineralogy suggests a continental source, possibly near the grounding line of the Nivl Ice Shelf, rather than a winnowing of sediments near the shelf break or advection from deeper water. Current velocities intensified after 2000 yr BP, removed fine material from these sediments and led to a relict sediment, consisting of coarse bryozoan and molluscan debris.
Resumo:
The Southern Ocean (SO) plays a key role in modulating atmospheric CO2 via physical and biological processes. However, over much of the SO, biological activity is iron-limited. New in situ data from the Antarctic zone south of Africa in a region centered at -20°E - 25°E reveal a previously overlooked region of high primary production, comparable in size to the northwest African upwelling region. Here, sea ice together with enclosed icebergs is channeled by prevailing winds to the eastern boundary of the Weddell Gyre, where a sharp transition to warmer waters causes melting. This cumulative melting provides a steady source of iron, fuelling an intense phytoplankton bloom that is not fully captured by monthly satellite production estimates. These findings imply that future changes in sea-ice cover and dynamics could have a significant effect on carbon sequestration in the SO.
Resumo:
The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland in summer 2012. During the second half of the experiment, dimethylsulphide (DMS) concentrations in the highest fCO2 mesocosms (1075-1333 µatm) were 34 % lower than at ambient CO2 (350 µatm). However the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 % and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 pmol L-1 increasing to 4.3 ± 0.4 pmol L-1 and 87.4 ± 14.9 pmol L-1 increasing to 134.4 ± 24.1 pmol L-1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl-? concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (± 0.9) pmol L-1 and iodoethane (C2H5I) at 0.5 (± 0.1) pmol L-1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L-1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L-1) and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L-1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both Phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high CO2, low pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 µatm fCO2. After this upwelling, DMS concentrations declined, but halocarbon concentrations remained similar or increased compared to measurements prior to the change in conditions. Based on our findings, with future acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar values to today, however emissions of biogenic sulphur could significantly decrease from this region.