665 resultados para Debris avalanche
Resumo:
Ice-rafted debris (IRD) (>2 mm), input in eight sediment cores along the Eurasian continental margin (Arctic Ocean), have been studied over the last two glacial/interglacial cycles. Together with the revised chronologies and new micropaleontological data of two cores from the northern Barents Sea (PS2138) and northeastern Kara Sea (PS2741) spanning Marine Isotope Stages (MIS) 6 to 1, the IRD data give new insights into the glacial history of northern Eurasian ice-sheets over the last 150 ka. The chronologies of the cores are based on stable isotope records, AMS 14C datings, paleomagnetic and biostratigraphic data. Extensive episodes of northern Barents Sea ice-sheet growth, probably to the shelf edge, occurred during the late Weichselian (MIS 2) and the Saalian (MIS 6). Major IRD discharge at the MIS 4/3-transition hints to another severe glaciation, probably onto the outer shelf, during MIS 4. IRD-based instabilities of the marine-based ice margin along the northern Barents Sea between MIS 4 and 2 are similar in timing with North Atlantic Heinrich events and Nordic Seas IRD events, suggesting similar atmospheric cooling over a broad region or linkage of ice-sheet fluctuations through small sea-level events. In the relatively low-precipitation areas of eastern Eurasia, IRD peak values during Termination II and MIS 4/3-transition suggest a Kara Sea ice-sheet advance onto the outer shelf, probably to the shelf edge, during glacial MIS 6 and 4. This suggests that during the initial cooling following the interglacials MIS 5, and possibly MIS 7, the combined effect of sustained inflow of Atlantic water into the Arctic Ocean and penetration of moisture-bearing cyclones into easterly direction supported major ice build-up during Saalian (MIS 6) and Mid-Weichselian (MIS 4) glaciation. IRD peak values in MIS 5 indicate at least two advances of the Severnaya Semlya ice-sheet to the coast line during the Early Weichselian. In contrast, a distinct Kara Sea ice advance during the Late Weichselian (MIS 2) is not documented by the IRD records along the northeastern Kara Sea margin.
Resumo:
Lonestone abundances in CRP-1 were investigated using three methods: core examination at Cape Roberts Camp, analysis of digital core images and follow-up core examination. For all images of split-core, we determined size and depth of every detectable lonestone larger than 3 mm. Lonestone abundance decreases exponentially with clast size. Although no significant depth-dependent variations in lonestone size distribution were detected, a strong 0.5-0.7 m abundance periodicity, of unknown origin, is evident within diamicts. Lonestone volume percentage was estimated from size distribution: most size classes contribute approximately the same volume to the total. Sizes >16 mm have rare enough lonestones that their counts are nonrepresentative when based on short intervals of split core. This problem does not affect total counts significantly, but the volume analysis needs to be confined to <= 6 mm lonestones to avoid instability induced by rare and nonrepresentative larger lonestones. If lonestone abundance can be used as an indicator of glacial proximity, then our CRP-1 lonestone abundance logs confirm the overall character of previously inferred variations in relative distance to the ice margin. Large-scale changes in lonestone abundance also reflect the CRP-1 sequence stratigraphy, with individual sequences generally characterised by basal lonestone-rich diamict overlain by lonestone-poor sands and muds. The relationship between glacial proximity and lonestone abundance within diamicts and within sand-mud intervals is, however, less certain. For example, two or three gradual lonestone increases may indicate regressions during glacial advances, in contrast to the more common CRP-l pattern of dominantly transgressive sequences.
Resumo:
At mid- to high-latitude marine sites, ice-rafted debris (IRD) is commonly recognized as anomalously coarse-grained terrigenous material contained within a fine-grained hemipelagic or pelagic matrix (e.g., Conolly and Ewing, 1970; Ruddiman, 1977, doi:10.1130/0016-7606(1977)88<1813:LQDOIS>2.0.CO;2; Krissek, 1989, doi:10.2973/odp.proc.sr.104.114.1989; Jansen et al., 1990; Bond et al., doi:10.1038/360245a0, 1992; Krissek, 1995, doi:10.2973/odp.proc.sr.145.118.1995). The presence of such ice-rafted material is a valuable indicator of the presence of glacial ice at sea level on an adjacent continent, whereas the composition of the IRD can often be used to identify the location of the source area (e.g., Goldschmidt, 1995, doi:10.1016/0025-3227(95)00098-J). Because the amount of core recovered during Leg 163 was very limited, this shore-based, postcruise study focuses on materials recovered at a nearby site during Leg 152. In particular, this study examines sediments recovered at Site 919; these sediments were described as containing a significant ice-rafted component in the Leg 152 Initial Reports volume (Larsen, Saunders, Clift, et al., 1994, doi:10.2973/odp.proc.ir.152.1994). In this study, the sedimentary section from Site 919 has been examined with the goal of providing a detailed history of glaciations on Greenland and other landmasses adjacent to the Norwegian-Greenland Sea; this history ultimately will be calibrated using an oxygen isotope stratigraphy (Flower, 1998, doi:10.2973/odp.proc.sr.152.219.1998), although that calibration has not been completed at this time. Because ice-core studies of the Greenland Ice Sheet (GIS) have shown that the GIS changed dramatically, and in some cases extremely rapidly, during at least the last interglacial stage (GRIP Members, 1993, doi:10.1038/364203a0), a detailed IRD record from the Southeast Greenland margin should provide insight into the longer term behavior of this sensitive component of the Northern Hemisphere climate system.
Resumo:
Planktic foraminiferal census data, faunal sea surface temperatures (SSTs) and oxygen isotopic and lithic records from a site in the northeast Atlantic were analyzed to study the interglacial dynamics of Marine Isotope Stage (MIS) 11, a period thought to closely resemble the Holocene on the basis of orbital forcing. Interglacial conditions during MIS 11 persisted for approximately 26 ka. After the main deglacial meltwater processes ceased, a 10- to 12-ka-long transitional period marked by significant water mass circulation changes occurred before surface waters finally reached their thermal maximum. This SST peak occurred between 400 and 397 ka, inferred from the abundance of the most thermophilic foraminiferal species and was coincident with lowest sea level according to benthic isotope values. The ensuing stepwise SST decrease characterizes the overall climate deterioration preceding the increase in global ice volume by ab. 3 ka. This cooling trend was followed by a more pronounced cold event that began at 388 ka, and that terminated in the recurrence of icebergs at the site around 382 ka. Because the water mass configuration of early MIS 11 evolved quite differently from that of the early Holocene, there is little evidence that MIS 11 can serve as an appropriate analogue for a future Holocene climate, despite the similarity in some orbital parameters.
Resumo:
Oxygen isotope records, radiocarbon AMS data, carbonate and opal stratigraphy, sediment magnetic susceptibility, tephrachronology, and paleontological results were used to obtain detailed sediment stratigraphy and an age model for the studied cores. For studying sea-ice sedimentation an analysis of lithogenic grain number in >0.15 mm grain size fraction of bottom sediments was carried out. For quantitative estimation of intensity ice-rafting debris sedimentation number of IRD particles per sq cm per ka was calculated. Obtained results allowed to plot IRD AR distribution for the first oxygen isotope stage (0-12.5 14C ka, 14C) and for the second stage (12.5-24 14C ka). The first stage was subdivided into the latest deglaciation and the beginning of Holocene (6-12.5 14C ka) (transitive period), when the sea level was changing significantly, and the second part of Holocene (0-6 14C ka), when climate conditions and the sea level were similar to modern estimates. Data clearly show strong increase in ice formation in the glacial Sea of Okhotsk and its extent in the middle part of the sea. Average annual duration of ice coverage during glaciation was longer than that for interglaciation. However the sea ice cover was not continuous all the year round and disappeared in summer time except the far northwestern part of the sea.
Resumo:
A total of 1.7 g of unmelted meteorite particles have been recovered from FS Polarstern piston cores collected on expedition ANT XII/4 that contain ejecta from the Eltanin impact event. Most of the mass (1.2 g) is a large, single specimen that is a polymict breccia, similar in mineralogy and chemistry to howardites or the silicate fraction of mesosiderites. Most of the remaining mass is in several large individual pieces (20-75mg each) that are polymict breccias, fragments dominated by pyroxene, and an igneous rock fragment. The latter has highly fractionated REE, similar to those reported in mafic clasts from mesosiderites. Other types of specimens identified include fragments dominated by maskelynite or olivine. These pieces of the projectile probably survived impact by being blown off the back surface of the Eltanin asteroid during its impact into the Bellingshausen Sea.