778 resultados para CORE PARTICLE
Resumo:
Surface currents and sediment distribution of the SE South American upper continental margin are under influence of the South American Monsoon System (SAMS) and the Southern Westerly Wind Belt (SWWB). Both climatic systems determine the meridional position of the Subtropical Shelf Front (STSF) and probably also of the Brazil-Malvinas Confluence (BMC). We reconstruct the changing impact of the SAMS and the SWWB on sediment composition at the upper Rio Grande Cone off southern Brazil during the last 14 cal kyr combining sedimentological, geochemical, micropaleontological and rock magnetic proxies of marine sediment core GeoB 6211-2. Sharp reciprocal changes in ferri- and paramagnetic mineral content and prominent grain-size shifts give strong clues to systematic source changes and transport modes of these mostly terrigenous sediments. Our interpretations support the assumption that the SAMS over SE South America was weaker than today during most of the Late Glacial and entire Early Holocene, while the SWWB was contracted to more southern latitudes, resembling modern austral summer-like conditions. In consequence, the STSF and the BMC were driven to more southern positions than today's, favoring the deposition of Fe-rich but weakly magnetic La Plata River silts at the Rio Grande Cone. During the Mid Holocene, the northern boundary of the SWWB migrated northward, while the STSF reached its northernmost position of the last 14 cal kyr and the BMC most likely arrived at its modern position. This shift enabled the transport of Antarctic diatoms and more strongly magnetic Argentinean shelf sands to the Rio Grande Cone, while sediment contributions from the La Plata River became less important. During the Late Holocene, the modern El Niño Southern Oscillation set in and the SAMS and the austral tradewinds intensified, causing a southward shift of the STSF to its modern position. This reinforced a significant deposition of La Plata River silts at the Rio Grande Cone. These higher magnetic silts with intermediate Fe contents mirror the modern more humid terrestrial climatic conditions over SE South America.
Resumo:
Benthic d13C values (F. wuellerstorfi), kaolinite/chlorite ratios and sortable silt median grain sizes in sediments of a core from the abyssal Agulhas Basin record the varying impact of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) during the last 200 ka. The data indicate that NADW influence decreased during glacials and increased during interglacials, in concert with the global climatic changes of the late Quaternary. In contrast, AABW displays a much more complex behaviour. Two independent modes of deep-water formation contributed to the AABW production in the Weddell Sea: 1) brine rejection during sea ice formation in polynyas and in the sea ice zone (Polynya Mode) and 2) super-cooling of Ice Shelf Water (ISW) beneath the Antarctic ice shelves (Ice Shelf Mode). Varying contributions of the two modes lead to a high millennial-scale variability of AABW production and export to the Agulhas Basin. Highest rates of AABW production occur during early glacials when increased sea ice formation and an active ISW production formed substantial amounts of deep water. Once full glacial conditions were reached and the Antarctic ice sheet grounded on the shelf, ISW production shut down and only brine rejection generated moderate amounts of deep water. AABW production rates dropped to an absolute minimum during Terminations I and II and the Marine Isotope Transition (MIS) 4/3 transition. Reduced sea ice formation concurrent with an enhanced fresh water influx from melting ice lowered the density of the surface water in the Weddell Sea, thus further reducing deep water formation via brine rejection, while the ISW formation was not yet operating again. During interglacials and the moderate interglacial MIS 3 both brine formation and ISW production were operating, contributing various amounts to AABW formation in the Weddell Sea.