Sedimentological investigations and age model on sediment core PS2561-2
Cobertura |
LATITUDE: -41.858333 * LONGITUDE: 28.541667 * DATE/TIME START: 1994-04-02T12:38:00 * DATE/TIME END: 1994-04-02T12:38:00 |
---|---|
Data(s) |
30/01/2012
|
Resumo |
Benthic d13C values (F. wuellerstorfi), kaolinite/chlorite ratios and sortable silt median grain sizes in sediments of a core from the abyssal Agulhas Basin record the varying impact of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) during the last 200 ka. The data indicate that NADW influence decreased during glacials and increased during interglacials, in concert with the global climatic changes of the late Quaternary. In contrast, AABW displays a much more complex behaviour. Two independent modes of deep-water formation contributed to the AABW production in the Weddell Sea: 1) brine rejection during sea ice formation in polynyas and in the sea ice zone (Polynya Mode) and 2) super-cooling of Ice Shelf Water (ISW) beneath the Antarctic ice shelves (Ice Shelf Mode). Varying contributions of the two modes lead to a high millennial-scale variability of AABW production and export to the Agulhas Basin. Highest rates of AABW production occur during early glacials when increased sea ice formation and an active ISW production formed substantial amounts of deep water. Once full glacial conditions were reached and the Antarctic ice sheet grounded on the shelf, ISW production shut down and only brine rejection generated moderate amounts of deep water. AABW production rates dropped to an absolute minimum during Terminations I and II and the Marine Isotope Transition (MIS) 4/3 transition. Reduced sea ice formation concurrent with an enhanced fresh water influx from melting ice lowered the density of the surface water in the Weddell Sea, thus further reducing deep water formation via brine rejection, while the ISW formation was not yet operating again. During interglacials and the moderate interglacial MIS 3 both brine formation and ISW production were operating, contributing various amounts to AABW formation in the Weddell Sea. |
Formato |
application/zip, 4 datasets |
Identificador |
https://doi.pangaea.de/10.1594/PANGAEA.774847 doi:10.1594/PANGAEA.774847 |
Idioma(s) |
en |
Publicador |
PANGAEA |
Direitos |
CC-BY: Creative Commons Attribution 3.0 Unported Access constraints: unrestricted |
Fonte |
Supplement to: Krüger, Stefan; Leuschner, Dirk C; Ehrmann, Werner; Schmiedl, Gerhard; Mackensen, Andreas (2012): North Atlantic Deep Water and Antarctic Bottom Water variability during the last 200 ka recorded in an abyssal sediment core off South Africa. Global and Planetary Change, 80-81, 180-189, doi:10.1016/j.gloplacha.2011.10.001 |
Palavras-Chave | #<2 µm, >9 phi; Age; AGE; Age, 14C AMS; Age, 14C milieu/reservoir corrected; Age, dated; Age, dated, error to older; Age, dated, error to younger; Age dated; Age e -; Age e +; Age model; Agulhas Basin; ANT-XI/4; Atterberg settling tubes; BP; Calculated; Calendar years; Calendar years, standard deviation; CALPAL 2007-Hulu; Cal yrs; Cal yrs std dev; Clay/Silt; Clay/Silt ratio; D50; Depth; DEPTH, sediment/rock; DFG-Schwerpunktprogramm 1158 - Antarktisforschung; DFG-SPP1158; Gravity corer (Kiel type); Laser Particle Sizer, Fritsch Analysette 22; Median, grain size; of sortable silt, 10 µm - 63 µm; Polarstern; PS2561-2; PS30; PS30/030; Sand; see reference(s); Silt; Silt/clay; Silt/clay ratio; Size fraction < 0.002 mm, > 9 phi, clay; SL |
Tipo |
Dataset |