627 resultados para Age, Uranium-Thorium


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis it is shown that the cosmogenic radionuclide 10Be proved to be a sensitive stratigraphic tool for sediment cores from the Arctic Ocean with low or negligible content of biogenic carbonate, impeding a reliable 0180 stratigraphy. 10Be enables a stratigraphy of Arctic sediments comparable to the d18O stratigraphy Imbrie et al. [1984] in that high concentration of 10Be are related to interglacial stages in contrast to lower values during glacial periods. To use the °Be profile as dating tool it is necessary to investigate the sources and sinks as well as the pathways of this radiotracer. 10Be is produced in the upper atmosphere and transfered to the earth's surface by dry and wet deposition. Besides the atmospheric component there is an important input of 10Be with the rivers to the Arctic Ocean. I determined depositional 10Be fluxes in the shelf area of the Laptev Sea, which is characterized by a huge input of river water, the continental slope of the Laptev Sea, the central Arctic Ocean and the Norwegian- and Greenland Sea. The depositional 10Be fluxes of (20 ± 5) x 10**6 atoms/cm**2/a in the shelf area of the Laptev Sea are by two orders of magnitude higher than the recent atmospheric input (0.2 - 0.5) x 10**6 atoms/cm**2/a in Greenland. while the fluxes in the central Arctic Ocean are in the same range. Further I developed a model to reconstruct the pathways of radionuclides 230Th, 231Pa and 10Be in high northern latitudes. The modelling results were compared with the measured concentrations in the water column and the recent depositional fluxes. These results show that the recent pathways of these nuclides can be rebuild by this model. Thus we can apply this model to earlier oxygen isotope stages to find out which predominate conditions lead to the determined depositional fluxes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Explosive ocean island volcanism in the Greenland-Iceland-Norwegian Sea (GIN Sea) is indicated by marine tephra layers at 10-300 ka. Peaks of explosive volcanism occurred in oxygen isotope stages 8, 7, 5 and 1. The depositional age of the tephra was estimated using the oxygen isotope stratigraphy and dating of marine records. Geochemical analyses of the tephra layers show that all originate from Iceland. Here we report the characteristics of tephra from these major Icelandic events in 30 deep-sea cores from the GIN Sea. Our findings provide constraints on the distribution of tephra from the eruption source. For the Vedde Ash (oxygen isotope stage 1) we estimate a minimum fallout area of 2*10**5 km**2, stretching from central Greenland in the west and southern Sweden in the east, to 71°N in the GIN Sea. The magnitude of the eruption and the regional wind conditions controlled the extent and concentrations of these ash fallout events. Oceanic circulation and differential settling may have affected the distribution and final deposition of ash particles such as bubble wall shards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbonate veins hosted in ultramafic basement drilled at two sites in the Mid Atlantic Ridge 15°N area record two different stages of fluid-basement interaction. A first generation of carbonate veins consists of calcite and dolomite that formed syn- to postkinematically in tremolite-chlorite schists and serpentine schists that represent gently dipping large-offset faults. These veins formed at temperatures between 90 and 170 °C (oxygen isotope thermometry) and from fluids that show intense exchange of Sr and Li with the basement (87Sr/86Sr = 0.70387 to 0.70641, d7Li L-SVEC = + 3.3 to + 8.6 per mil). Carbon isotopic compositions range to high d13C PDB values (+ 8.7 per mil), indicating that methanogenesis took place at depth. The Sr-Li-C isotopic composition suggests temperatures of fluid-rock interaction that are much higher (T > 350-400 °C) than the temperatures of vein mineral precipitation inferred from oxygen isotopes. A possible explanation for this discrepancy is that fluids cooled conductively during upflow within the presumed detachment fault. Aragonite veins were formed during the last 130 kyrs at low-temperatures within the uplifted serpentinized peridotites. Chemical and isotopic data suggest that the aragonites precipitated from cold seawater, which underwent overall little exchange with the basement. Oxygen isotope compositions indicate an increase in formation temperature of the veins by 8-12 °C within the uppermost ~ 80 m of the subseafloor. This increase corresponds to a high regional geothermal gradient of 100-150 °C/km, characteristic of young lithosphere undergoing rapid uplift.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution of redox-sensitive metals in sediments is potentially a proxy for past ocean ventilation and productivity, but deconvolving these two major controls has proved difficult to date. Here we present a 740 kyr long record of trace element concentrations from an archived sediment core collected at ~15°S on the western flank of the East Pacific Rise (EPR) on 1.1 Myr old crust and underlying the largest known hydrothermal plume in the world ocean. The downcore trace element distribution is controlled by a variable diagenetic overprint of the inferred primary hydrothermal plume input. Two main diagenetic processes are operating at this site: redox cycling of transition metals and ferrihydrite to goethite transition during aging. The depth of oxidation in these sediments is controlled by fluctuations in the relative balance of bottom water oxygen and electron donor input (organic matter and hydrothermal sulfides). These fluctuations induce apparent variations in the accumulation of redox-sensitive species with time. Subsurface U and P peaks in glacial age sediments, in this and other published data sets along the southern EPR, indicate that basin-wide changes in deep ocean ventilation, in particular at glacial-interglacial terminations II, III, IV, and V, alter the depth of the oxidation front in the sediments. These basin-wide changes in the deep Pacific have significant implications for carbon partitioning in the ocean-atmosphere system, and the distribution of redox-sensitive metals in ridge crest sediment can be used to reconstruct past ocean conditions at abyssal depths in the absence of alternative proxy records.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the African Humid Period (AHP), much of the modern hyperarid Saharan desert was vegetated and covered with numerous lakes. In marine sediments off northwestern Africa, the AHP is represented by markedly reduced siliciclastic sediment flux between ~ 12.3 and 5.5 ka. Changes in the origin of this terrigenous sediment fraction can be constrained by sediment chemistry and radiogenic isotope tracers. At Ocean Drilling Program (ODP) Site 658, Hole C (20°44.95'N, 18°34.85'W, 2263 mbsl), the neodymium (Nd) isotope composition of terrigenous detritus shows little variability throughout the last 25 kyr, indicating that the contributing geological terranes have not changed appreciably since the last glacial period. In contrast, there were large and abrupt changes in strontium (Sr) isotope ratios and chemical compositions associated with the AHP, during which 87Sr/86Sr ratios were markedly less radiogenic, and sediments show higher chemical indices of alteration. We show that sediment geochemical changes during the AHP cannot be attributed to changes in the source terranes, physical sorting, or intensity of chemical weathering. The low 87Sr/86Sr and high Sr concentrations of AHP-age samples also conflict with the interpretation of increased fine-grained, fluvially derived sediments. We propose that the most significant compositional changes at ODP 658C are due to the addition of an aluminosilicate component that has a highly altered major element signature but is enriched in soluble elements like Sr and magnesium (Mg) compared to aluminum (Al) and has low 87Sr/86Sr relative to local terrigenous source areas. We interpret these characteristics to reflect authigenic sediment supply from extensive North African paleolake basins that were prevalent during the AHP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reconstructions of eolian dust accumulation in northwest African margin sediments provide important continuous records of past changes in atmospheric circulation and aridity in the region. Existing records indicate dramatic changes in North African dust emissions over the last 20 ka, but the limited spatial extent of these records and the lack of high-resolution flux data do not allow us to determine whether changes in dust deposition occurred with similar timing, magnitude and abruptness throughout northwest Africa. Here we present new records from a meridional transect of cores stretching from 31°N to 19°N along the northwest African margin. By combining grain size endmember modeling with 230Th-normalized fluxes for the first time, we are able to document spatial and temporal changes in dust deposition under the North African dust plume throughout the last 20 ka. Our results provide quantitative estimates of the magnitude of dust flux changes associated with Heinrich Stadial 1, the Younger Dryas, and the African Humid Period (AHP; ~11.7-5 ka), offering robust targets for model-based estimates of the climatic and biogeochemical impacts of past changes in North African dust emissions. Our data suggest that dust fluxes between 8 and 6 ka were a factor of ~5 lower than average fluxes during the last 2 ka. Using a simple model to estimate the effects of bioturbation on dust input signals, we find that our data are consistent with abrupt, synchronous changes in dust fluxes in all cores at the beginning and end of the AHP. The mean ages of these transitions are 11.8±0.2 ka (1Sigma) and 4.9±0.2 ka, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graywackes and shales of the Bol'shoi Lyakhov Island originally attributed to Mesozoic were subsequently considered based on microfossils as Late Proterozoic in age. At present, these sediments in the greater part of the island are dated back to Permian based on palynological assemblages. In the examined area of the island, this siliciclastic complex is intensely deformed and tectonically juxtaposed with blocks of oceanic and island-arc rocks exhumed along the South Anyui suture. The complex is largely composed of turbidites with members displaying hummocky cross-stratification. Studied mineral and geochemical charac¬teristics of the rocks defined three provenances of clastic material: volcanic island arc, sedimentary cover and/or basement of an ancient platform, and exotic blocks of oceanic and island-arc rocks such as serpentinites and amphibolites. All rock associations represent elements of an orogenic structure that originated by collision of the New Siberian continental block with the Anyui-Svyatoi Nos island arc. Flyschoid sediments accumu¬lated in a foredeep in front of the latter structure in the course of collision. Late Jurassic volcanics belonging to the Anyui-Svyatoi Nos island arc determine the lower age limit of syncollision siliciclastic rocks. Presence of Late Jurassic zircons in sandstones of the flyschoid sequence in the Bol'shoi Lyakhov Island is confirmed by fission-track dating. The upper age limit is determined by Aptian-Albian postcollision granites and diorites intruding the siliciclastic complex. Consequently, the flyschoid sequence is within stratigraphic range from the terminal Late Jurassic to Neocomian. It appears that Permian age of sediments suggested earlier is based on redeposited organic remains. The same Late Jurassic-Neocomian age and lithology are characteristic of fossiliferous siliciclastic sequences of the Stolbovoi and Malyi Lyakhov islands, the New Siberian Archipelago, and of graywackes in the South Anyui area in the Chukchi Peninsula. All these sediments accumulated in a spacious foredeep that formed in the course the late Cimmerian orogeny along the southern margin of the Arctic conti¬nental block.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ESR-spectra of foraminifera in arctic sediment cores display the [CO2]- -signal (g=2.0006). Research on the thermal behaviour of the [CO2]- -signal shows that both natural and artificial irradiation generates a precursor and a thermal unstable component of the [CO2]- -signal. The precursor can be transfered to the stable radical, and unstable radicals can be removed by heating. The signal-change by heating depends on the irradiation dose. Because of the varying response on thermal treatment, the dose-response curves show systematic differences depending on the applied procedure (single- or multi-aliquot method with or without heating). A model for the description of the [CO2]- -signal-change is presented. The combination of two exponential saturation functions seems to be an adequate analytical description of the dose-response curve of the [CO2]- -signal in foraminifera. Due to the limited thermal stability this signal can be used for dating foraminifera with ages up to about 190 ka.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution records of Ca and Sr were obtained from shipboard XRF analyses of bulk sediments in five gravity cores from the southern Cape Basin, South Atlantic Ocean. Sr/Ca ratios display regular glacial/interglacial variations of 14-40% and reveal a close correlation with the SPECMAP record, minimum Sr/Ca ratios appearing during glacial (delta18 O) maxima, distinct increases during periods of deglaciation, and highest ratios in interstadials. Shifts in carbonate-producing phytoplankton and/or zooplankton assemblages over glacial/interglacial cycles are suggested to be the main cause for the observed variations in Sr/Ca patterns. Quick assessment of the relationship between Sr/Ca ratios and the SPECMAP record made it possible to easily transfer an age model to the newly collected cores already during the cruise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oceanic flood basalts are poorly understood, short-term expressions of highly increased heat flux and mass flow within the convecting mantle. The uniqueness of the Caribbean Large Igneous Province (CLIP, 92-74 Ma) with respect to other Cretaceous oceanic plateaus is its extensive sub-aerial exposures, providing an excellent basis to investigate the temporal and compositional relationships within a starting plume head. We present major element, trace element and initial Sr-Nd-Pb isotope composition of 40 extrusive rocks from the Caribbean Plateau, including onland sections in Costa Rica, Colombia and Curaçao as well as DSDP Sites in the Central Caribbean. Even though the lavas were erupted over an area of ~3*10**6 km**2, the majority have strikingly uniform incompatible element patterns (La/Yb=0.96+/-0.16, n=64 out of 79 samples, 2sigma) and initial Nd-Pb isotopic compositions (e.g. 143Nd/144Ndin=0.51291+/-3, epsilon-Nd i=7.3+/-0.6, 206Pb/204Pbin=18.86+/-0.12, n=54 out of 66, 2sigma). Lavas with endmember compositions have only been sampled at the DSDP Sites, Gorgona Island (Colombia) and the 65-60 Ma accreted Quepos and Osa igneous complexes (Costa Rica) of the subsequent hotspot track. Despite the relatively uniform composition of most lavas, linear correlations exist between isotope ratios and between isotope and highly incompatible trace element ratios. The Sr-Nd-Pb isotope and trace element signatures of the chemically enriched lavas are compatible with derivation from recycled oceanic crust, while the depleted lavas are derived from a highly residual source. This source could represent either oceanic lithospheric mantle left after ocean crust formation or gabbros with interlayered ultramafic cumulates of the lower oceanic crust. High 3He/4He in olivines of enriched picrites at Quepos are ~12 times higher than the atmospheric ratio suggesting that the enriched component may have once resided in the lower mantle. Evaluation of the Sm-Nd and U-Pb isotope systematics on isochron diagrams suggests that the age of separation of enriched and depleted components from the depleted MORB source mantle could have been <=500 Ma before CLIP formation and interpreted to reflect the recycling time of the CLIP source. Mantle plume heads may provide a mechanism for transporting large volumes of possibly young recycled oceanic lithosphere residing in the lower mantle back into the shallow MORB source mantle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methane hydrate is an ice-like substance that is stable at high-pressure and low temperature in continental margin sediments. Since the discovery of a large number of gas flares at the landward termination of the gas hydrate stability zone off Svalbard, there has been concern that warming bottom waters have started to dissociate large amounts of gas hydrate and that the resulting methane release may possibly accelerate global warming. Here, we can corroborate that hydrates play a role in the observed seepage of gas, but we present evidence that seepage off Svalbard has been ongoing for at least three thousand years and that seasonal fluctuations of 1-2°C in the bottom-water temperature cause periodic gas hydrate formation and dissociation, which focus seepage at the observed sites.