923 resultados para Selaginella


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ice-wedge polygon (IWP) mires in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from a low-centered IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, d13C), stable water isotopes (d18O, dD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions in the IWP field that developed after drainage (SU3: 3120 cal yrs BP to AD 2012). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatoms species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High resolution palynological and geochemical data of sediment core GeoB 3910-2 (located offshore Northeast Brazil) spanning the period between 19 600 and 14 500 calibrated year bp (19.6-14.5 ka) show a land-cover change in the catchment area of local rivers in two steps related to changes in precipitation associated with Heinrich Event 1 (H1 stadial). At the end of the last glacial maximum, the landscape in semi-arid Northeast Brazil was dominated by a very dry type of caatinga vegetation, mainly composed of grasslands with some herbs and shrubs. After 18 ka, considerably more humid conditions are suggested by changes in the vegetation and by Corg and C/N data indicative of fluvial erosion. The caatinga became wetter and along lakes and rivers, sedges and gallery forest expanded. The most humid period was recorded between 16.5 and 15 ka, when humid gallery (and floodplain) forest and even small patches of mountainous Atlantic rain forest occurred together with dry forest, the latter being considered as a rather lush type of caatinga vegetation. During this humid phase erosion decreased as less lithogenic material and more organic terrestrial material were deposited on the continental slope of northern Brazil. After 15 ka arid conditions returned. During the humid second phase of the H1 stadial, a rich variety of landscapes existed in Northeast Brazil and during the drier periods small pockets of forest could probably survive in favorable spots, which would have increased the resilience of the forest to climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tropical regions have been reported to play a key role in climate dynamics. To date, however, there are uncertainties in the timing and the amplitude of the response of tropical ecosystems to millennial-scale climate change. We present evidence of an asynchrony between terrestrial and marine signals of climate change during Heinrich events preserved in marine sediment cores from the Brazilian continental margin. The inferred time lag of about 1000 to 2000 years is much larger than the ecological response to recent climate change and appears to be related to the nature of hydrological changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(Einleitung) Im süddeutschen Jungmoränengebiet wurden während der letzten 25 Jahre verschiedene vegetationsgeschichtliche Arbeiten durchgeführt, die der Untersuchung der Späteiszeit galten. Die wichtigsten von ihnen stammen von G. Lang (1952), A. Bertsch (1961), H. Müller (1962) und H. Schmeidl (1971). Ohne Zweifel müssen die dabei gewonnenen Ergebnisse in anderen Landschaften des nördlichen Alpenvorlandes überprüft und verschiedene Probleme weiterhin verfolgt werden, wie z. B. das der Definition und Umgrenzung der Bölling-Zeit und der Älteren Tundrenzeit s. str. und die Abhängigkeit der Vegetationsentwicklung von der Meereshöhe. Die vorliegende Studie ging auch auf die Notwendigkeit zurück, die spätglazialen Ablagerungen bei dem Tonwerk Kolbermoor nahe Rosenheim, einer der klassischen Stätten der Quartärforschung im nördlichen Alpenvorland, einer vegetationsgeschichtlichen Neubearbeitung zu unterziehen. Die Untersuchungen wurden auf benachbarte Seen, den Sims-See und den Hofsrätter See, ausgedehnt, da die Ergebnisse von Kolbermoor faziell beeinflußt schienen (Niedermoore) und an limnischem Material überprüft werden mußten.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lobsigensee is a small kettle hole lake 15 km north-west of Bern on the Swiss Plateau, at an altitude of 514 m asl. Its surface is 2ha today, its maximum depth 2.7 m; it has no inlet and the overflow functions mainly during snow melting. The area was covered by Rhone ice during the Last Glaciation (map in Fig.2). Local geology, climate and vegetation are summarized in Figure 3A-C, the history of settlement in Figures 5-7. In order to reconstruct the vegetational and environmental history of the lake and its surroundings pollen analysis and other bio- and isotope stratigraphies were applied to twelve profiles cored across the basin with modified Livingstone corers (Fig.3 D). (1) The standard diagram: The central core LQ-90 is described as the standard pollen diagram (Chapter 3) with 10 local pollen assemblage zones of the Late-Glacial (local PAZ Ll to Ll0, from about 16'000(7) to 10'000 years BP) and 20 PAZ of the Holocene (local PAZ L11 to L30), see Figs. 8-10 and 20-24. Local PAZ L 1 to L3 are in the Late-Glacial clay and record the vegetational development after the ice retreat: L1 shows very low pollen concentration and high Pinus percentages due to long-distance transport and reworking; the latter mechanism is corroborated by the findings of thermophilous and pre-Quaternary taxa. Local PAZ L2 has a high di versi ty of non-arboreal pollen (NAP) and reflects the Late-Glacial steppe rich in heliophilous species. Local PAZ L3 is similar but additionally rich in Betula nana and Sal1x, thus reflecting a "shrub tundra". The PAZ L1 to L3 belong to the Oldest Dryas biozone. Local PAZ L4 to L 10 are found in the gyttja of the profundal or in the lake marl of the littoral and record the Late-Glacial forests. L4 is the shrub phase of reforestation with very high Junlperus and rapidly increasing Betula percentages. L5 is the PAZ with a first, L7 with a second dominance of tree-birches, separated by L6 showing a depression in the Betula curve. L4 to L7 can be assigned to the Balling biozone. Possible correlation of the Betula depression to the Older Dryas biozone is discussed. In local PAZ L8 Plnus immigrates and expands. L9 shows a facies difference in that Plnus dominates over Betula in littoral but not in profundal spectra. L8 and L9 belong to the Allerod biozone. In its youngest part the volcanic ash from Laach/Eifel is regularly found (11,000 BP). The local PAZ Ll0 corresponds to the Younger Dryas blozone. The merely slight increase of the NAP indicates that the pine forests of the lowland were not strongly affected by a cooler climate. In order to evaluate the significance of the littoral accumulation of coniferous pollen the littoral profile LQ-150 is compared to the profundal. Radiocarbon stratigraphies derived from different materials are presented in Figures 13 and 14 and in Tables 2 and 3. The hard-water errors in the gyttja samples and the carbonate samples are similar. The samples of terrestrial plant macrofossils are not affected by hard-water errors. Two plateaux of constant age appear in the age-depth relationship; their consequence for biostratigraphy as well as pollen concentration and influx diagrams are discussed. Radiocarbon ages of the Late-Glacial pollen zones are shown in Table 10. The Holocene vegetational history is recorded in the local PAZ L 11 to L30. After a Preboreal (PAZ L11) dominated by pine and birch the expansions of Corylus, Ulmus and Quercus are very rapid. Among these taxa Corylus dominates dur ing the Boreal (PAZ L 12 and L 1 3), whereas the components of the mixed oak forest dominate in the Older Atlantic (PAZ L14 to L16). In the Younger Atlantic (PAZ L 17 to L 19) Fagus and Alnus play an increasing, the mixed oak forest a decreasing role. During the period of local PAZ L19 Neolithic settlers lived on the shore of Lobsigensee. During the Subboreal (PAZ L20 and L21) and the Older Subatlantic (L22 to L25) strong fluctuations of Fagus and often antagonistic peaks of NAP, Alnus, Betula and Corylus can be interpreted as signs of human impact on vegetation. L23 is characterized not only by high values of NAP (especially apophytes and anthropochorous species) but also by the appearance of Juglans, Castanea and Secale which point to the Roman colonization of the area. For a certain period during the Younger Subatlantic (PAZ L26 to L30) the lake was used for retting hemp (Cannabis). Later the dominance of Quercus pollen indicates the importance of wood pastures. The youngest sediments reflect the wide-spread agricultural grass lands and the plantation of Pinus and Picea. Radiocarbon dates for the Holocene are given in Figure 23 and Table 4, the extrapolated ages of the Holocene pollen zones in Table 15. (2) The cross sections: Figures 25 and 26 give a summary of the litho- and palynostratigraphy of the two cross sections. Based on 11 Late-Glacial and 9 Holocene pollen diagrams (in addition to the standard ones), the consistency of the criteria for the definition of the pollen zones is examined in Tables 7 and 8 for the Late-Glacial and in Tables 11 to 14 for the Holocene. Sediment thicknesses across the basin for each pollen zone are presented in these tables as well as in Figures 43 to 45 for the Late-Glacial and in Figures 59 to 65 for the Holocene. Sediment focusing can explain differences between the gyttja cores of the profundal. Focusing is more than compensated for through "stretching" by carbonate precipitation on the littoral terrace. Pollen influx to the cross section are discussed (Chapters 4.1.5. and 4.2.3.). (3) The regional pollen zones: Based on some selected sites between Lake Geneva and Lake Constance regional pollen zones are proposed (Table 16, 17 and 19). (4) Paleoecology: Climatic change in the Late-Glacial can be inferred from Coleoptera, Trichoptera, Chironomidae and d18O of carbonates: a distinct warming is recorded around 12' 600 BP and around 10' 000 BP. The Younger Dryas biozone (10'700-10'000 BP) was the only cooling found in the Late-Glacial. The Betula depression often correlated wi th the Older Dryas biozone was possibl not colder but dryer than the previous period. During the Holocene the lowland site is not very sensitive to the minor climatic changes. Table 22 summarizes climatic and trophic changes before 8'000 BP as deduced from various biostratigraphies studied by a number of authors. Ostracods, Chironomids and fossil pigments indicate that anoxic conditions prevailed during the BoIling (possibly meromixis). Changes in the lake level are illustrated in Figure 74. A first lake-level lowering occurred in the early Holocene (10'000 to 9'000 BP), a second during the Atlantic (about 6'800 to 5'200 BP). The first "shrinking" of the lake volume resulted in a eutrophication recorded by laminations in the profundal and by pigments of Cyanophyceae. The second fall in water level corresponds to an increase of Nymphaeaceae. Human impact can be inferred in three ways: eutrophication of the lake (since the Neolithic), changes of terrestrial vegetation by deforestations (cyclicity of Fagus, see Figures 78 to 80), and enhanced erosion (increasing sedimentation rates by inwashed clay, particularly since the Roman Colonization, see Figures 49 and 81). Summary: This paper was planned as the final report on Lobsigensee. However, a number of issues are not answered but can only be asked more precisely, for example: (1) For the two periods with the highest rates of change, Le. the Bolling and the Preboreal biozones, pollen influx may reflect vegetation dynamics. Detailed investigations of these periods in annually laminated sediments are planned. (2) Biostratigraphies other than palynostratigraphy are needed to estimate the degree of linkage or independence in the development of terrestrial and lacustrine ecosystems. Often our sampling intervals were not identical, thus influencing our temporal resolution. (3) 6180- and 14C-stratigraPhies with high resolution will elucidate the leads and lags of these dynamic periods. Plateaux of constant age in the age-depth relationship have a strong bearing on both biological and geophysical understanding of Late-Glacial and early Holocene developments. (4) Numerical methods applied to the pollen diagrams of the cross section will help to quantify the significance of similari ties and dissimilarities across a single basin (with Prof. Birks). (5) Numerical methods applied to different sites on the Swiss Plateau and on the transect across the Alps will be helpful in evaluating the influence of different environmental factors (with Prof. Birks). (6) A new map 1: 1000 with 50cm-contour lines prov ided by Prof. Zurbuchen will be combined with a grid of cores sampling the transition from lake marl to peat enabling us to calculate paleo-volumes of the lake. This is interesting for the two "shrinking periods" (in Fig. 74A numbers 2-6 and 7-10), both accompanied by eutrophication. The pal eo-volume during the Neoli thic set tlement of the Cortaillod culture linked wi th an est l.mate of trophic change derived from diatoms (Prof. Smol in prep.) could possibly give an indication of the size of the human population of this period. (7) For the period with the antagonism between Fagus peaks and ABC-peaks close collaboration between palynologists, geochemists and archeologists should enable us to determine the influence of prehistoric and historic people on vegetation (collaboration with Prof. Stockli and Prof. Herzig). (8) The core LL-75 taken with a "cold letter box" will be analysed for major and trace elements by Dr. Sturm for 210pb and 137Cs by Prof.von Gunten and for pollen. We will see if our local PAZ L30 really corresponds to the surface sediment and if the small seepage lake reflects modern pollution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A basaltic tephra layer consisting of brownish-olive glass shards. and about 0.2 mm thick. was found in cores from four lakes in northwest Germany. According to pollen analysis it was deposited during the early Boreal period (corresponding to about 8700 BP). The petrographic properties. the geochemical composition and the age agree with those of the Saksunarvatn tephra. which was first found on the Faroe Islands. The position of the tephra layer in the pollen stratigraphy and in the absolute time-scale is discussed. Procedures for locating the tephra in other cores are suggested.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This collection prepared to IX Congress of INQUA containes 25 articles concerning general and regional problems of Pleistocene. The chronological scale of the Late Pliocene and Pleistocene, climatical cycles and methods of the absolute dating are considered. Some data obtained by means ef paleomagnetic, thermoluminescence and radiocarbon methods at several point sections (Likhvin, Rostov-Jarosiavsky, Priasovje, Ob-garm, Chagan, Pryobskoje Plateau, Lower Volga) are given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollen and macrofossil analysis of lake sediments revealed the complete development of vegetation from Riss late-glacial to early Würm glacial times at Samerberg (12°12' E, 47°45' N, 600 m a.s.l) on the northern border of the Alps. The pollen bearing sediments overlie three stratigraphic units, at the base a ground-moraine, then a 13 m thick layer of pollen free silt and clay, and then a younger moraine; all the sediments including the pollen bearing sediments, lie below the Würm moraine. The lake, which had developed in an older glacial basin, became extinct, when the ice of the river Inn glacier filled its basin during Würm full-glacial time at the latest. One interglacial, three interstadials, and the interdigitating treeless periods were identified at Samerberg. Whereas the cold periods cannot be distinguished from one another pollenanalytically, the interglacial and the two older interstadials have distinctive characteristics. A shrub phase with Juniperus initiated reforestation and was followed by a pine phase during the interglacial and each of the three interstadials. The further development of the interglacial vegetation proceeded with a phase when deciduous trees (mainly Quercus, oak) and hazel (Corylus) dominated, though spruce (Picea) was present at the same time in the area. A phase with abundant yew (Taxus) led to an apparently long lasting period with dominant spruce and fir (Abies) accompanied by some hornbeam (Carpinus). The vegetational development shows the main characteristics of the Riss/Würm interglacial, though certain differences in the vegetational development in the northern alpine foreland are obvious. These differences may result from the existence of an altitudinal zonation of the vegetation in the vicinity of the site and are the expression of its position at the border of the Alps. A greater age (e.g. the Holsteinian) can be excluded by reason of the vegetational development, and is also not indicated at first sight from the geological and stratigraphical data of the site. Characteristic of the Riss/Würm vegetational development in southern Germany - at least in the region between Lake Starnberg/Samerberg/Salzach - is the conspicuous yew phase. According to absolute pollen counts, yew not only displaced the deciduous species, but also displaced spruce preferentially, thus indicating climatic conditions less favourable for spruce, caused by mild winters (Ilex spreading!) and by short-term low precipitation, indicated by the reduced sedimentation rate. The oldest interstadials is bipartite, as due to the climatic deterioration the early vegetational development, culminating in a spruce phase, had been interrupted by another expansion of pine. A younger spruce-dominated period with fir and perhaps also with hornbeam and beech (Fagus) followed. An identical climatic development has been reported from other European sites with long pollen sequences (see chapter 6.7). However, different tree species are found in the same time intervals in Middle Europe during Early Würm times. Sediments of the last interglacial (Eem or Riss/Würm) have been found in all cases below the sediments of the bipartite interstadial, and in addition one more interstadial occurs in the overlying sediments. This proves that Eem and Riss/Würm of the north-european plain resp. of the alpine foreland are contemporaneous interglacials although this has been questioned by some authors. The climax vegetation of the second interstadial was a spruce forest without fir and without more demanding deciduous tree species. The vegetational development of the third interstadial is recorded fragmentary only. But it has been established that a spruce forest was present. The oldest interstadial must correspond to the danish Brørup interstadial as it is expressed in northern Germany, the second one to the Odderade interstadial. A third Early Würm interstadial, preserved fragmentarily at Samerberg, is known from other sites. The dutch Amersfoort interstadial most likely is the equivalent to the older part of the bipartite danish Brørup interstadial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollen and spores from a deep-sea core located west of the Niger Delta record an uninterrupted area of lowland rain forest in West Africa from Guinea to Cameroon during the last Interglacial and the early Holocene. During other periods of the last 150 ka, a savanna corridor between the western - Guinean - and the eastern - Congolian - part of the African lowland rain forest existed. This so-called Dahomey Gap had its largest extension during Glacial Stages 6, 4, 3, and 2. Reduced surface salinity in the eastern Gulf of Guinea as recorded by dinoflagellate cysts indicates sufficient precipitation for extensive forest growth during Stages 5 and 1. The large modern extension of dry forest and savanna in West Africa cannot be solely explained by climatic factors. Mangrove expansion in and west of the Niger Delta was largest during the phases of sea-level rise of Stages 5 and 1. During Stages 6, 4, 3, and 2, shelf areas were exposed and the area of the mangrove swamps was minimal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Im Fichtelgebirge, im Harz und in der Rhön wurden die spätglazialen und frühpostglazialen Ablagerungen von vier Mooren in 625-805 m Meereshöhe pollenanalytisch hinsichtlich von Makrofossilien (Samen, Früchte) und stratigraphisch untersucht. 1. Nur im Fichtelgebirge konnte in 625 m Höhe ein vollständiger Spätglazialablauf aufgedeckt werden. Es handelt sich dabei um einen ehemaligen kleinen See südlich Fichtelberg, der wahrscheinlich durch Tieftauen eines begrabenen Firn- oder Schneefeldes entstand. Betula pubescens wurde kontinuierlich vom Ende der Älteren Tundrenzeit bis zum Boreal nachgewiesen. Auf nahe Vorkommen von Kiefern darf man seit IIb (Jüngere Allerödzeit) schließen, sie wurden aber durch die Jüngere Tundrenzeit, während der es noch zu Solifluktionserscheinungen kam, von ihren höher gelegenen Standorten wieder verdrängt. Die allerödzeitlichen Birken- bzw. Birkenkiefernwälder müssen in diesen Höhen noch licht oder parkartig gewesen sein. Verbreitet waren Rasengesellschaften, die hauptsächlich aus Gramineen und Artemisia bestanden. Auch Beutla nana und Pollen von Ephedra cf. distachya wurden nachgewiesen. In der Seelohe (770-780 m) ist nur der Ausklang einer waldarmen Zeit, offensichtlich der Jüngeren Tundrenzeit, erfaßt. Großreste von Bäumen fehlen. 2. Im Oberharz (Radauer Born, 800 m) wurde nur ein kurzes Stück der Jüngeren Tundrenzeit aufgedeckt. Großreste von Bäumen fehlen hier ebenfalls. Aus dem Praeboreal stammt der erst fossile Nachweis von Betuala nana im Oberharz. Die Zwergbirke wächst auf dem Moor noch heute und gilt hier als Eiszeitrelikt. 3. Eine Datierung der spätglazialen Ablagerungen vom Roten Moor in der Rhön ist zur Zeit nur mit Vorbehalt möglich. Zwar wurde hier der Laacher Bimstuff gefunden, er ist jedoch umgelagert und unmittelbar über dem Tuffhorizont befindet sich eine Schichtlücke. Wahrscheinlich zeigt die Bimsstuffschicht aber doch noch den Allerödhorizont an. 4. Während der Jüngeren Tundrenzeit dürfte im Fichtelgebirge die Waldgrenze bei etwas 600 m gelegen haben. Das bedeutet gegenüber der heutigen Waldgrenze eine Erniedrigung um rund 700 m. Am Schluß der Älteren Tundrenzeit lag die Waldgrenze wahrscheinlich wie in der Allerödzeit höher als 600-650 m, aber unter 800 m. 5. Pollenkörner der Ericalen sind in den Ablagerungen aus dem Harz wesentlich häufiger als in den anderene Gebieten. Häufungen von Ericalen-pollen sind besonders für Spätglazialablagerungen solcher Gebiete charakteristisch, die heute im subozeanischen oder ozeanischen Klimabereich liegen (Niederlande, Irland). 6. Während sich die Bodengegensätze in der heutigen Vegetation der drei Untersuchungsgebiete sehr deutlich bemerkbar machen, wurden keine nennenswerten Unterschiede im spätglazialen Pollenniederschlag der drei Mittelgebirge gefunden. Vermutlich erfolgte die Auswaschung der Nährstoffe aus den an sich nährstoffkräftigen Granitverwitterungsböden während der Späteiszeit nicht so rasch, wie es heute der Fall ist. Die Niederschlagsmengen dürften geringer und das Klima weniger humid gewesen sein. 7. In der Liste der spätglazialen Pflanzen überwiegen die Arten mit borealzirkumpolarer Verbreitung. Arktisch-alpine Arten treten zurück. Kontinentale und subatlantische bzw. subozeanische Arten sind etwa gleich stark vertreten.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pollen, spore and organic walled dinoflagelletas cyst associations of two marine sediment cores from the Java Sea off the mouths of Jelai River (South Kalimantan) and Solo River (East Java) reflect environment and vegetation changes during the last ca 3500 years in the region. A decline in primary forest taxa (e.g. Agathis, Allophylus, Dacrycarpus, Dacrydium, Dipterocarpaceae, Phyllocladus, and Podocarpus) suggest that the major change in vegetation is caused by the forest canopy opening that can be related to human activity. The successively increase of pollen of pioneer canopy and herb taxa (e.g. Acalypha, Ficus, Macaranga/Mallotus, Trema, Pandanus) indicate the development of a secondary vegetation. In Java these changes started much earlier (ca at 2950 cal yr BP) then in Kalimantan (ca at 910 cal yr BP) and seem to be more severe. Changes in the marine realm, reflected by the dinoflagellate cyst association correspond to changes in vegetation on land. They reflect a gradual change from relatively well ventilated to more hypoxic bottom/pore water conditions in a more eutrophic environment. Near the coast of Java, the shift of the water trophic status took place between ca 820 and 500 cal yrs BP, while near the coast of Kalimantan it occurred as late as at the beginning of the 20th century. We observe an increasing amount of the cyst of Polykrikos schwarzii, cyst of P. kofoidii, Lingulodinium machaerophorum, Nematosphaeropsis labyrinthus and Selenopemphix nephroides at times of secondary vegetation development on land, suggesting that these species react strongly on human induced changes in the marine environment, probably related to increased pollution and eutrophication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die pollenanalytische Untersuchung des Rotmooses in Verbindung mit C-14 Daten hat ergeben, daß die organogenen Sedimente nachwärmezeitliche Bildungen sind. Ein Gletschervorstoß um 2500 v. Chr. konnte mit Hilfe der C-14 Daten eingegrenzt und mit anderen Fundstellen parallelisiert werden. Weitere pollenanalytisch festgestellte Gletscher und auch Waldgrenzschwankungen konnten festgestellt, müssen aber noch genau datiert und parallelisiert werden.