123 resultados para Metadata application profiles
Resumo:
Lobsigensee is a small kettle hole lake 15 km north-west of Bern on the Swiss Plateau, at an altitude of 514 m asl. Its surface is 2ha today, its maximum depth 2.7 m; it has no inlet and the overflow functions mainly during snow melting. The area was covered by Rhone ice during the Last Glaciation (map in Fig.2). Local geology, climate and vegetation are summarized in Figure 3A-C, the history of settlement in Figures 5-7. In order to reconstruct the vegetational and environmental history of the lake and its surroundings pollen analysis and other bio- and isotope stratigraphies were applied to twelve profiles cored across the basin with modified Livingstone corers (Fig.3 D). (1) The standard diagram: The central core LQ-90 is described as the standard pollen diagram (Chapter 3) with 10 local pollen assemblage zones of the Late-Glacial (local PAZ Ll to Ll0, from about 16'000(7) to 10'000 years BP) and 20 PAZ of the Holocene (local PAZ L11 to L30), see Figs. 8-10 and 20-24. Local PAZ L 1 to L3 are in the Late-Glacial clay and record the vegetational development after the ice retreat: L1 shows very low pollen concentration and high Pinus percentages due to long-distance transport and reworking; the latter mechanism is corroborated by the findings of thermophilous and pre-Quaternary taxa. Local PAZ L2 has a high di versi ty of non-arboreal pollen (NAP) and reflects the Late-Glacial steppe rich in heliophilous species. Local PAZ L3 is similar but additionally rich in Betula nana and Sal1x, thus reflecting a "shrub tundra". The PAZ L1 to L3 belong to the Oldest Dryas biozone. Local PAZ L4 to L 10 are found in the gyttja of the profundal or in the lake marl of the littoral and record the Late-Glacial forests. L4 is the shrub phase of reforestation with very high Junlperus and rapidly increasing Betula percentages. L5 is the PAZ with a first, L7 with a second dominance of tree-birches, separated by L6 showing a depression in the Betula curve. L4 to L7 can be assigned to the Balling biozone. Possible correlation of the Betula depression to the Older Dryas biozone is discussed. In local PAZ L8 Plnus immigrates and expands. L9 shows a facies difference in that Plnus dominates over Betula in littoral but not in profundal spectra. L8 and L9 belong to the Allerod biozone. In its youngest part the volcanic ash from Laach/Eifel is regularly found (11,000 BP). The local PAZ Ll0 corresponds to the Younger Dryas blozone. The merely slight increase of the NAP indicates that the pine forests of the lowland were not strongly affected by a cooler climate. In order to evaluate the significance of the littoral accumulation of coniferous pollen the littoral profile LQ-150 is compared to the profundal. Radiocarbon stratigraphies derived from different materials are presented in Figures 13 and 14 and in Tables 2 and 3. The hard-water errors in the gyttja samples and the carbonate samples are similar. The samples of terrestrial plant macrofossils are not affected by hard-water errors. Two plateaux of constant age appear in the age-depth relationship; their consequence for biostratigraphy as well as pollen concentration and influx diagrams are discussed. Radiocarbon ages of the Late-Glacial pollen zones are shown in Table 10. The Holocene vegetational history is recorded in the local PAZ L 11 to L30. After a Preboreal (PAZ L11) dominated by pine and birch the expansions of Corylus, Ulmus and Quercus are very rapid. Among these taxa Corylus dominates dur ing the Boreal (PAZ L 12 and L 1 3), whereas the components of the mixed oak forest dominate in the Older Atlantic (PAZ L14 to L16). In the Younger Atlantic (PAZ L 17 to L 19) Fagus and Alnus play an increasing, the mixed oak forest a decreasing role. During the period of local PAZ L19 Neolithic settlers lived on the shore of Lobsigensee. During the Subboreal (PAZ L20 and L21) and the Older Subatlantic (L22 to L25) strong fluctuations of Fagus and often antagonistic peaks of NAP, Alnus, Betula and Corylus can be interpreted as signs of human impact on vegetation. L23 is characterized not only by high values of NAP (especially apophytes and anthropochorous species) but also by the appearance of Juglans, Castanea and Secale which point to the Roman colonization of the area. For a certain period during the Younger Subatlantic (PAZ L26 to L30) the lake was used for retting hemp (Cannabis). Later the dominance of Quercus pollen indicates the importance of wood pastures. The youngest sediments reflect the wide-spread agricultural grass lands and the plantation of Pinus and Picea. Radiocarbon dates for the Holocene are given in Figure 23 and Table 4, the extrapolated ages of the Holocene pollen zones in Table 15. (2) The cross sections: Figures 25 and 26 give a summary of the litho- and palynostratigraphy of the two cross sections. Based on 11 Late-Glacial and 9 Holocene pollen diagrams (in addition to the standard ones), the consistency of the criteria for the definition of the pollen zones is examined in Tables 7 and 8 for the Late-Glacial and in Tables 11 to 14 for the Holocene. Sediment thicknesses across the basin for each pollen zone are presented in these tables as well as in Figures 43 to 45 for the Late-Glacial and in Figures 59 to 65 for the Holocene. Sediment focusing can explain differences between the gyttja cores of the profundal. Focusing is more than compensated for through "stretching" by carbonate precipitation on the littoral terrace. Pollen influx to the cross section are discussed (Chapters 4.1.5. and 4.2.3.). (3) The regional pollen zones: Based on some selected sites between Lake Geneva and Lake Constance regional pollen zones are proposed (Table 16, 17 and 19). (4) Paleoecology: Climatic change in the Late-Glacial can be inferred from Coleoptera, Trichoptera, Chironomidae and d18O of carbonates: a distinct warming is recorded around 12' 600 BP and around 10' 000 BP. The Younger Dryas biozone (10'700-10'000 BP) was the only cooling found in the Late-Glacial. The Betula depression often correlated wi th the Older Dryas biozone was possibl not colder but dryer than the previous period. During the Holocene the lowland site is not very sensitive to the minor climatic changes. Table 22 summarizes climatic and trophic changes before 8'000 BP as deduced from various biostratigraphies studied by a number of authors. Ostracods, Chironomids and fossil pigments indicate that anoxic conditions prevailed during the BoIling (possibly meromixis). Changes in the lake level are illustrated in Figure 74. A first lake-level lowering occurred in the early Holocene (10'000 to 9'000 BP), a second during the Atlantic (about 6'800 to 5'200 BP). The first "shrinking" of the lake volume resulted in a eutrophication recorded by laminations in the profundal and by pigments of Cyanophyceae. The second fall in water level corresponds to an increase of Nymphaeaceae. Human impact can be inferred in three ways: eutrophication of the lake (since the Neolithic), changes of terrestrial vegetation by deforestations (cyclicity of Fagus, see Figures 78 to 80), and enhanced erosion (increasing sedimentation rates by inwashed clay, particularly since the Roman Colonization, see Figures 49 and 81). Summary: This paper was planned as the final report on Lobsigensee. However, a number of issues are not answered but can only be asked more precisely, for example: (1) For the two periods with the highest rates of change, Le. the Bolling and the Preboreal biozones, pollen influx may reflect vegetation dynamics. Detailed investigations of these periods in annually laminated sediments are planned. (2) Biostratigraphies other than palynostratigraphy are needed to estimate the degree of linkage or independence in the development of terrestrial and lacustrine ecosystems. Often our sampling intervals were not identical, thus influencing our temporal resolution. (3) 6180- and 14C-stratigraPhies with high resolution will elucidate the leads and lags of these dynamic periods. Plateaux of constant age in the age-depth relationship have a strong bearing on both biological and geophysical understanding of Late-Glacial and early Holocene developments. (4) Numerical methods applied to the pollen diagrams of the cross section will help to quantify the significance of similari ties and dissimilarities across a single basin (with Prof. Birks). (5) Numerical methods applied to different sites on the Swiss Plateau and on the transect across the Alps will be helpful in evaluating the influence of different environmental factors (with Prof. Birks). (6) A new map 1: 1000 with 50cm-contour lines prov ided by Prof. Zurbuchen will be combined with a grid of cores sampling the transition from lake marl to peat enabling us to calculate paleo-volumes of the lake. This is interesting for the two "shrinking periods" (in Fig. 74A numbers 2-6 and 7-10), both accompanied by eutrophication. The pal eo-volume during the Neoli thic set tlement of the Cortaillod culture linked wi th an est l.mate of trophic change derived from diatoms (Prof. Smol in prep.) could possibly give an indication of the size of the human population of this period. (7) For the period with the antagonism between Fagus peaks and ABC-peaks close collaboration between palynologists, geochemists and archeologists should enable us to determine the influence of prehistoric and historic people on vegetation (collaboration with Prof. Stockli and Prof. Herzig). (8) The core LL-75 taken with a "cold letter box" will be analysed for major and trace elements by Dr. Sturm for 210pb and 137Cs by Prof.von Gunten and for pollen. We will see if our local PAZ L30 really corresponds to the surface sediment and if the small seepage lake reflects modern pollution.
Resumo:
The Norian Steinmergel-Keuper (SMK) represents a low-latitude cyclically-bedded playa system of the Mid-German Basin. We investigated a drilling site (core Morsleben) and sections from marginal positions. Dolomite/red mudstone beds form rhythmic alternations that were associated with varying monsoon activity. Hence, low K/Al ratios of dolomite beds suggest increased chemical weathering of the crystalline hinterland and therefore increased monsoonal rainfall. High K/Al ratios in red mudstone beds reflect increased physical weathering of the hinterlands during dryer periods. Dolomite layers reflect the lake stage (maximum monsoon) while red mudstones indicate the dry phase (minimum monsoon) of the playa cycle. We distinguished five major types of cyclic facies alternations, representing specific facies zones in the playa system. We have implemented spectrophotometry as a tool for high-resolution cyclostratigraphy. The dense sampling increment (up to 1 cm) allows for the recognition of all orbital frequencies. Sediment colour profiles reveal striking hierarchical cycles from semi-precession (SP, 99 kyr) over precession (P, 19.8 kyr) and obliquity (O, 36 kyr) to eccentricity (E1-2 109 kyr; E3, 413 kyr). A significant about 2 Myr-signal is attributed to the longer-term eccentricity E4. One monsoonal (precession) cycle includes two carbonate precipitation events. We propose that stratified mudstone and red mudstone are associated with maximum and minimum monsoon during the transition of the solstices in perihelion and aphelion, respectively. The two carbonate precipitation events were most likely created when equinoxes were in perihelion and aphelion, respectively. A sedimentary semi-precession response cycle is a novel finding for the Norian strata. The obliquity signal is attributed to incoming atmospheric moisture from the northeast of the SMK basin. The E4 cycle controls lake-level changes over long times. Apparently, E4 is responsible whether or not a threshold value is crossed. Bundles of 109 kyr and 413 kyr in red mudstones suggest a dry system with reduced monsoonal activity. In contrast, humid periods reveal thick layers of dolomite beds, indicating that during those intervals the monsoonal activity was strong enough to prevent the playa system from drying out completely.
Resumo:
The late Eocene through earliest Miocene stable-isotope composition of southwest Pacific microfossils has been examined in a traverse of high-quality sedimentary sequences ranging from subantarctic (DSDP Site 277) through temperate regions (DSDP Sites 592 and 593). Changes in oxygen-isotope values, measured in benthic and planktonic foraminifers, document the Oligocene development and strengthening of latitudinal thermal zonation from water masses with broad temperature gradients during the Eocene to the steeper gradients and more distinct latitudinally distributed surface water-mass belts of the Neogene. The oxygen-isotope records can be divided into three intervals: late Eocene, early Oligocene, and middle to late Oligocene. Each interval represents a successive stage in the evolution of latitudinal thermal gradients between subantarctic and temperate regions in the Southern Hemisphere. During the late Eocene, oxygen-isotope values at subantarctic Site 277 were similar to those at temperate Sites 592 and 593. The isotope values suggest that, although the inferred paleotemperatures at Site 277 are slightly cooler on average than those at the temperate sites, there is no evidence for a major thermal boundary between the regions at this time. All three sites record the well-known oxygen-isotope enrichment of about 1 per mil in both planktonic and benthic foraminifers in close association with the Eocene/Oligocene boundary. In contrast to the earliest Oligocene enrichments in the planktonic and benthic oxygen-isotope composition at Site 277, more northern Sites 592 and 593 exhibit a depletion through the early-middle Oligocene. This documents the beginning of thermal segregation as subantarctic waters cooled relative to those at temperate latitudes. During the Oligocene, this surface-water differentiation continued, as measured by planktonic d18O values. The oxygen-isotope records of the benthic foraminifers also began to diverge in the earliest Oligocene. The most enriched oxygen-isotope values in all records cluster in the middle Oligocene, marked by oscillating episodes of enrichments >0.5 per mil occurring most prominently in the subantarctic record of Site 277. These values can be interpreted as recording either the coldest oceanic temperatures of the Paleogene and/or accumulations of Antarctic ice. After this interval, latitudinal thermal differentiation developed rapidly during the middle Oligocene, especially in the surface waters which actually warmed in temperate areas. If the enriched Oligocene oxygen-isotope values indicate that ice had accumulated, this ice must have disappeared by the early Miocene, when depleted oxygen-isotope values suggest very warm conditions. The data presented in this chapter document the progressive increase of latitudinal temperature gradients from the late Eocene through the late Oligocene. This pattern of increasing isotopic offset between latitudinally distributed southwest Pacific sites is linked to the establishment and strengthening of the Circum-Antarctic Current, previously considered to have developed during the middle to late Oligocene. The intensification of this current system progressively decoupled the warm subtropical gyres from cool polar circulation, in turn leading to increased Antarctic glaciation.
Resumo:
Iron solubility measurements in the Mauritanian upwelling and the adjacent Open Ocean of the Tropical Atlantic show for all stations lower values in the surface mixed layer than at depth below the pycnocline. We attribute this distribution to a combination of loss terms, chiefly photo-oxidation of organic ligands in the surface, and supply terms, predominantly from the release of ligands from the decomposition of organic matter. Significant correlations with pH, oxygen and phosphate for all samples below the surface mixed layer indicate that biogenic remineralisation of organic matter results in the release of iron binding ligands into the dissolved phase. The comparison of the cFeS/PO4**3- ratio with other published data from intermediate and deep waters in the Pacific suggests an enhanced release of iron chelators in the more productive Mauritanian upwelling zone.
Resumo:
Pollen and macrofossil analysis of lake sediments revealed the complete development of vegetation from Riss late-glacial to early Würm glacial times at Samerberg (12°12' E, 47°45' N, 600 m a.s.l) on the northern border of the Alps. The pollen bearing sediments overlie three stratigraphic units, at the base a ground-moraine, then a 13 m thick layer of pollen free silt and clay, and then a younger moraine; all the sediments including the pollen bearing sediments, lie below the Würm moraine. The lake, which had developed in an older glacial basin, became extinct, when the ice of the river Inn glacier filled its basin during Würm full-glacial time at the latest. One interglacial, three interstadials, and the interdigitating treeless periods were identified at Samerberg. Whereas the cold periods cannot be distinguished from one another pollenanalytically, the interglacial and the two older interstadials have distinctive characteristics. A shrub phase with Juniperus initiated reforestation and was followed by a pine phase during the interglacial and each of the three interstadials. The further development of the interglacial vegetation proceeded with a phase when deciduous trees (mainly Quercus, oak) and hazel (Corylus) dominated, though spruce (Picea) was present at the same time in the area. A phase with abundant yew (Taxus) led to an apparently long lasting period with dominant spruce and fir (Abies) accompanied by some hornbeam (Carpinus). The vegetational development shows the main characteristics of the Riss/Würm interglacial, though certain differences in the vegetational development in the northern alpine foreland are obvious. These differences may result from the existence of an altitudinal zonation of the vegetation in the vicinity of the site and are the expression of its position at the border of the Alps. A greater age (e.g. the Holsteinian) can be excluded by reason of the vegetational development, and is also not indicated at first sight from the geological and stratigraphical data of the site. Characteristic of the Riss/Würm vegetational development in southern Germany - at least in the region between Lake Starnberg/Samerberg/Salzach - is the conspicuous yew phase. According to absolute pollen counts, yew not only displaced the deciduous species, but also displaced spruce preferentially, thus indicating climatic conditions less favourable for spruce, caused by mild winters (Ilex spreading!) and by short-term low precipitation, indicated by the reduced sedimentation rate. The oldest interstadials is bipartite, as due to the climatic deterioration the early vegetational development, culminating in a spruce phase, had been interrupted by another expansion of pine. A younger spruce-dominated period with fir and perhaps also with hornbeam and beech (Fagus) followed. An identical climatic development has been reported from other European sites with long pollen sequences (see chapter 6.7). However, different tree species are found in the same time intervals in Middle Europe during Early Würm times. Sediments of the last interglacial (Eem or Riss/Würm) have been found in all cases below the sediments of the bipartite interstadial, and in addition one more interstadial occurs in the overlying sediments. This proves that Eem and Riss/Würm of the north-european plain resp. of the alpine foreland are contemporaneous interglacials although this has been questioned by some authors. The climax vegetation of the second interstadial was a spruce forest without fir and without more demanding deciduous tree species. The vegetational development of the third interstadial is recorded fragmentary only. But it has been established that a spruce forest was present. The oldest interstadial must correspond to the danish Brørup interstadial as it is expressed in northern Germany, the second one to the Odderade interstadial. A third Early Würm interstadial, preserved fragmentarily at Samerberg, is known from other sites. The dutch Amersfoort interstadial most likely is the equivalent to the older part of the bipartite danish Brørup interstadial.
Resumo:
Over the last decade pockmarks have proven to be important seabed features that provide information about fluid flow on continental margins. Their formation and dynamics are still poorly constrained due to the lack of proper three dimensional imaging of their internal structure. Numerous fluid escape features provide evidence for an active fluid-flow system on the Norwegian margin, specifically in the Nyegga region. In June-July 2006 a high-resolution seismic experiment using Ocean Bottom Seismometers (OBS) was carried out to investigate the detailed 3D structure of a pockmark named G11 in the region. An array of 14 OBS was deployed across the pockmark with 1 m location accuracy. Shots fired from surface towed mini GI guns were also recorded on a near surface hydrophone streamer. Several reflectors of high amplitude and reverse polarity are observed on the profiles indicating the presence of gas. Gas hydrates were recovered with gravity cores from less than a meter below the seafloor during the cruise. Indications of gas at shallow depths in the hydrate stability field show that methane is able to escape through the water-saturated sediments in the chimney without being entirely converted into gas hydrate. An initial 2D raytraced forward model of some of the P wave data along a line running NE-SW across the G11 pockmark shows, a gradual increase in velocity between the seafloor and a gas charged zone lying at ~300 m depth below the seabed. The traveltime fit is improved if the pockmark is underlain by velocities higher than in the surrounding layer corresponding to a pipe which ascends from the gas zone, to where it terminates in the pockmark as seen in the reflection profiles. This could be due to the presence of hydrates or carbonates within the sediments.
Resumo:
Palynological investigations in northeastern Bavaria (Bavarian Vogtland, Fichtelgebirge, Steinwald) reveal the Late Glacial and Postglacial history of the regional vegetation. Radiocarbon data in comparison with those from the neighbouring regions (Rhön, Oberpfälzer Wald, Bavarian Forests) show a time lag in the development of the arboreal vegetation due to migration processes. The Fichtelgebirge is the southernmost part ofnortheastern Bavaria where the early Alleröd period (pollen zone IIa) is characterised by a dominance of birch forests. Hazel reached maximal values around 8000 BP in the area from the Fichtelgebirge to the Bavarian Forests, e.g. about 600 years earlier than in the more northern Rhön mountains. For spruce there is a considerable time lag between the Bavarian Forests and the Fichtelgebirge. Spruce spreading started in the Fichtelgebirge during the older part of the Atlantic period (pollen zone VI). At the same time, spruce already was the dominant tree in the Bavarian Forests. During the younger part of the Atlantic period (pollen zone VII) spruce and mixed oak forest tree species frequently occurred in the Fichtelgebirge. At the end of pollen zone VI, spruce came to dominance. At the same time, the immigration of beech started. During the Subboreal period (pollen zone VIII), spruce remained being a dominant member in the forests and at the end of pollen zone VIII, fir began to spread rapidly. During the first part of the Subatlantic period (pollen zone IX) spruce, beech, fir and pine formed the mountainous forests in the Fichtelgebirge. In the area of the Bavarian Vogtland, however, fir was a dominant forest tree during pollen zone IX, while spruce and beech played a less important role. During the 12th century, human colonisation started in the area of the Fichtelgebirge. This is 400 years later as in the area of the Rhön mountains. Indicators for earlier forest clearances are rare or absent.
Resumo:
Im Fichtelgebirge, im Harz und in der Rhön wurden die spätglazialen und frühpostglazialen Ablagerungen von vier Mooren in 625-805 m Meereshöhe pollenanalytisch hinsichtlich von Makrofossilien (Samen, Früchte) und stratigraphisch untersucht. 1. Nur im Fichtelgebirge konnte in 625 m Höhe ein vollständiger Spätglazialablauf aufgedeckt werden. Es handelt sich dabei um einen ehemaligen kleinen See südlich Fichtelberg, der wahrscheinlich durch Tieftauen eines begrabenen Firn- oder Schneefeldes entstand. Betula pubescens wurde kontinuierlich vom Ende der Älteren Tundrenzeit bis zum Boreal nachgewiesen. Auf nahe Vorkommen von Kiefern darf man seit IIb (Jüngere Allerödzeit) schließen, sie wurden aber durch die Jüngere Tundrenzeit, während der es noch zu Solifluktionserscheinungen kam, von ihren höher gelegenen Standorten wieder verdrängt. Die allerödzeitlichen Birken- bzw. Birkenkiefernwälder müssen in diesen Höhen noch licht oder parkartig gewesen sein. Verbreitet waren Rasengesellschaften, die hauptsächlich aus Gramineen und Artemisia bestanden. Auch Beutla nana und Pollen von Ephedra cf. distachya wurden nachgewiesen. In der Seelohe (770-780 m) ist nur der Ausklang einer waldarmen Zeit, offensichtlich der Jüngeren Tundrenzeit, erfaßt. Großreste von Bäumen fehlen. 2. Im Oberharz (Radauer Born, 800 m) wurde nur ein kurzes Stück der Jüngeren Tundrenzeit aufgedeckt. Großreste von Bäumen fehlen hier ebenfalls. Aus dem Praeboreal stammt der erst fossile Nachweis von Betuala nana im Oberharz. Die Zwergbirke wächst auf dem Moor noch heute und gilt hier als Eiszeitrelikt. 3. Eine Datierung der spätglazialen Ablagerungen vom Roten Moor in der Rhön ist zur Zeit nur mit Vorbehalt möglich. Zwar wurde hier der Laacher Bimstuff gefunden, er ist jedoch umgelagert und unmittelbar über dem Tuffhorizont befindet sich eine Schichtlücke. Wahrscheinlich zeigt die Bimsstuffschicht aber doch noch den Allerödhorizont an. 4. Während der Jüngeren Tundrenzeit dürfte im Fichtelgebirge die Waldgrenze bei etwas 600 m gelegen haben. Das bedeutet gegenüber der heutigen Waldgrenze eine Erniedrigung um rund 700 m. Am Schluß der Älteren Tundrenzeit lag die Waldgrenze wahrscheinlich wie in der Allerödzeit höher als 600-650 m, aber unter 800 m. 5. Pollenkörner der Ericalen sind in den Ablagerungen aus dem Harz wesentlich häufiger als in den anderene Gebieten. Häufungen von Ericalen-pollen sind besonders für Spätglazialablagerungen solcher Gebiete charakteristisch, die heute im subozeanischen oder ozeanischen Klimabereich liegen (Niederlande, Irland). 6. Während sich die Bodengegensätze in der heutigen Vegetation der drei Untersuchungsgebiete sehr deutlich bemerkbar machen, wurden keine nennenswerten Unterschiede im spätglazialen Pollenniederschlag der drei Mittelgebirge gefunden. Vermutlich erfolgte die Auswaschung der Nährstoffe aus den an sich nährstoffkräftigen Granitverwitterungsböden während der Späteiszeit nicht so rasch, wie es heute der Fall ist. Die Niederschlagsmengen dürften geringer und das Klima weniger humid gewesen sein. 7. In der Liste der spätglazialen Pflanzen überwiegen die Arten mit borealzirkumpolarer Verbreitung. Arktisch-alpine Arten treten zurück. Kontinentale und subatlantische bzw. subozeanische Arten sind etwa gleich stark vertreten.
CTD profiles of the Deutsche Antarktis Expedition 1977/78 with FFS "Walther Herwig" as graphic plots
Resumo:
The biogeochemistry of iodine in the waters of the Atlantic sector of the Southern Ocean was investigated during the Polarstern cruise ANTXXIV-3 ZERO&DRAKE. The speciation and distribution of iodine (iodate and iodide) in seawater was examined across gradients of iron concentrations and phytoplankton abundance, ranging from an open ocean region along the Zero Meridian to the Weddell Sea and Drake Passage. Iodine cycling in high latitudes differs from that in low latitudes due to differences in the plankton community composition and the physicochemical characteristics. Iodate concentrations ranged between 400 and 450 nmol/L from the surface to the bottom. Surface concentrations of iodide (17 to over 60 nmol/L) were about an order of magnitude higher than below the pycnocline. The peak values of iodide lay nearly always within the euphotic zone and showed a weak, positive correlation with nitrite concentrations in the upper 200 m. In all vertical profiles a pronounced sub-surface maximum in iodide appears between 50 and 200 m depth indicating an iodide drawdown at the near surface. Iodide distribution in the Weddell Sea showed elevated levels in Weddell Sea Bottom Water (WSBW) indicating slow oxidation kinetics and the potential for iodide as a tracer of WSBW formation.