141 resultados para Labile
Resumo:
Sediment and interstitial water from Sites 651 and 653 (ODP Leg 107) were investigated by organic geochemical methods to characterize labile organic compound classes (amino compounds and carbohydrates) and to evaluate their progressive diagenetic and thermal degradation in deep-sea sediments. Downhole distribution of dissolved organic carbon (DOC) appears related to redox zones associated with bacterial activity and of diagenetic recrystallization of biogenic tests and not so much to organic matter concentrations in ambient sediments. DOC ranges from 250 to 8300 µmol/L (3-100.1 ppm). Amino acids contribute 10%-0.3% of DOC; carbohydrates range from 78 to 5 µmol/L. Rate of degradation of amino acids by thermal effects and/or bacterial activity at both sites (significantly different in sedimentation rates: average 41 cm/1000 yr in the top 300 m at Site 651, average 3.9 cm/1000 yr in the Pliocene/Quaternary sequence at Site 653 to 220 mbsf) is more dependent on exposure time rather than on the depth within the sediment column. Variability in neutral, acidic, and basic amino acid fractions of total amino acids (with a range of 1.1-0.02 µmol/g sediment; up to 2.5% of organic carbon) varies with carbonate content and by differences in thermal stability of amino acids. Distribution patterns of monosaccharides are interpreted to result from differences in organic matter sources, sedimentation rates, and the degree of organic matter decomposition prior to and subsequent to burial. Total particulate carbohydrates range from 1.82 to 0.21 µmol/g sediment and contribute about 8% to the sedimentary organic matter. Investigation of trace metals in the interstitial waters did not show any correlation of either DOC, amino compounds, or carbohydrates.
Resumo:
We studied the concurrence of methanogenesis and sulfate reduction in surface sediments (0-25 cm below sea floor, cmbsf) at six stations (70, 145, 253, 407, 770 and 1024 m) along the Peruvian margin (12° S). This oceanographic region is characterized by high carbon export to the seafloor, creating an extensive oxygen minimum zone (OMZ) on the shelf, both factors that could favor surface methanogenesis. Sediments sampled along the depth transect traversed areas of anoxic and oxic conditions in the bottom-near water. Net methane production (batch incubations) and sulfate reduction (35S-sulfate radiotracer incubation) were determined in the upper 0-25 cmbsf of multicorer cores from all stations, while deep hydrogenotrophic methanogenesis (> 30 cmbsf, 14C-bicarbonate radiotracer incubation) was determined in two gravity cores at selected sites (78 and 407 m). Furthermore, stimulation (methanol addition) and inhibition (molybdate addition) experiments were carried out to investigate the relationship between sulfate reduction and methanogenesis. Highest rates of methanogenesis and sulfate reduction in the surface sediments, integrated over 0-25 cmbsf, were observed on the shelf (70-253 m, 0.06-0.1 and 0.5-4.7 mmol m-2 d-1, respectively), while lowest rates were discovered at the deepest site (1024 m, 0.03 and 0.2 mmol m-2 d-1, respectively). The addition of methanol resulted in significantly higher surface methanogenesis activity, suggesting that the process was mostly based on non-competitive substrates, i.e., substrates not used by sulfate reducers. In the deeper sediment horizons, where competition was probably relieved due to the decline of sulfate, the usage of competitive substrates was confirmed by the detection of hydrogenotrophic activity in the sulfate-depleted zone at the shallow shelf station (70 m). Surface methanogenesis appeared to be correlated to the availability of labile organic matter (C / N ratio) and organic carbon degradation (DIC production), both of which support the supply of methanogenic substrates. A negative correlation of methanogenesis rates with dissolved oxygen in the bottom-near water was not obvious, however, anoxic conditions within the OMZ might be advantageous for methanogenic organisms at the sediment-water interface. Our results revealed a high relevance of surface methanogenesis on the shelf, where the ratio between surface to deep (below sulfate penetration) methanogenic activity ranged between 0.13 and 105. In addition, methane concentration profiles indicate a partial release of surface methane into the water column as well as a partial consumption of methane by anaerobic methane oxidation (AOM) in the surface sediment. The present study suggests that surface methanogenesis might play a greater role in benthic methane budgeting than previously thought, especially for fueling AOM above the sulfate-methane transition zone.
Resumo:
The membrane lipids diglycosyl-glycerol dibiphytanyl glycerol tetraethers (2G-GDGTs) in marine subsurface sediments are believed to originate from uncultivated benthic archaea, yet the production of 2G-GDGTs from subseafloor samples has not been demonstrated in vitro. In order to validate sedimentary biosynthesis of 2G-GDGTs, we performed a stable carbon isotope probing experiment on a subseafloor sample with six different 13C-labelled substrates (bicarbonate, methane, acetate, leucine, glucose and Spirulina platensis biomass). After 468 days of anoxic incubation, only glucose and S. platensis resulted in label uptake in lipid moieties of 2G-GDGTs, indicating incorporation of carbon from these organic substrates. The hydrophobic moieties of 2G-GDGTs showed minimal label incorporation, with up to 4 per mil 13C enrichment detected in crenarchaeol-derived tricyclic biphytane from the S. platensis-supplemented slurries. The 2G-GDGT-derived glucose or glycerol moieties also showed 13C incorporation (Dd13C = 18 - 38 per mil) in the incubations with glucose or S. platensis, consistent with a lipid salvage mechanism utilized by marine benthic archaea to produce new 2G-GDGTs. The production rates were nevertheless rather slow, even when labile organic matter was supplied. The 2G-GDGT turnover times of 1700 - 20 500 years were much longer than those estimated for subseafloor microbial communities, implying that sedimentary 2G-GDGTs as biomarkers of benthic archaea are cumulative records of past and present generations.
Resumo:
Dissolved organic matter (DOM) in the oceans constitutes a major carbon pool involved in global biogeochemical cycles. More than 96% of the marine DOM resists microbial degradation for thousands of years. The composition of this refractory DOM (RDOM) exhibits a molecular signature which is ubiquitously detected in the deep oceans. Surprisingly efficient microbial transformation of labile into RDOM was shown experimentally, implying that microorganisms produce far more RDOM than needed to sustain the global pool. By assessing the microbial formation and transformation of DOM in unprecedented molecular detail for 3 years, we show that most of the newly formed RDOM is molecularly different from deep sea RDOM. Only <0.4% of the net community production was channeled into RDOM molecularly undistinguishable from deep sea DOM. Our study provides novel experimentally derived molecular evidence and data for global models on the production, turnover and accumulation of marine DOM.
Resumo:
Except for a few discontinuous fragments of the Late Cretaceous/Early Cenozoic climate history and depositional environment, the paleoenvironmental evolution of the pre-Neogene central Arctic Ocean was virtually unknown prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition - ACEX) drilling campaign on Lomonosov Ridge in 2004. Here we present detailed organic carbon (OC) records from the entire ca. 200 m thick Paleogene OC-rich section of the ACEX drill sites. These records indicate euxinic "Black Sea-type" conditions favorable for the preservation of labile aquatic (marine algae-type) OC occur throughout the upper part of the early Eocene and the middle Eocene, explained by salinity stratification due to freshwater discharge. The superimposed short-term ("Milankovitch-type") variability in amount and composition of OC is related to changes in primary production and terrigenous input. Prominent early Eocene events of algae-type OC preservation coincide with global d13C events such as the PETM and Elmo events. The Elmo d13C Event has been identified in the Arctic Ocean for the first time.
Resumo:
Contents of labile (acid-soluble) sulfides were determined in the upper layer of bottom sediments at 80 stations on the Caucasian shelf of the Black Sea. Maximum values of this parameter occurred in black mud accumulated in zones of intense pollution in the Gelendzhik and Tsemess bays and in shelf areas adjacent to large health resort objects and to seaports. Contents of acid-soluble sulfides in sediments varied from 400 to 900 mg S/dm**3 of wet mud. In zones of moderate pollution they varied from 200 to 400 mg S/dm**3. Rate of sulfate reduction was 10-40 mg S/dm**3 of wet sediment per day. Obtained data show that accumulation of labile sulfides in the upper layer of shelf bottom sediments is directly related to anthropogenic pollution and is one of the most hazardous environmental aftereffects.
Resumo:
Processes governing the formation of rare earth element (REE) composition are under consideration for ferromanganese deposits (nodules, separate parts of nodules, and micronodules of different size fractions) within the Clarion-Clipperton ore province in the Pacific Ocean. It is shown that ferromanganese oxyhydroxide deposits with different chemical compositions can be produced in sediments under similar sedimentation conditions. In areas with high bioproductivity size of micronodules has positive correlation with Mn content and Mn/Fe and P/Fe ratios and negative correlation with Fe, P, REE, and Ce anomaly. Behavior of REE in micronodules from sediments within bioproductive zones is related to increase of influence of diagenetic processes in sediments as a response to the growth of size of micronodules. Distinctions in chemical composition of micronodules and nodules are related to their interaction with associated sediments. Micronodules grow in sediments using hydrogenous ferromanganese oxyhydroxides. As they grow, micronodules are enriched in labile fraction of sediments reworked during diagenesis. Sources of material of ferromanganese nodules are governed by their formation at the water bottom interface. Their upper part is formed by direct settling of iron oxyhydroxides from bottom water, whereas the lower part is accumulated due to diagenetic processes in sediments. Differences of REE compositions in ferromanganese deposits are caused by the reduction of manganese during diagenesis and its separation from iron. Iron oxyhydroxides form a sorption complex due to sorption of phosphate-ion from bottom and pore waters. Sorption of phosphate-ion results in additional sorption of REE.
Resumo:
Organic geochemical and petrological investigations were carried out on Cenomanian/Turonian black shales from three sample sites in the Tarfaya Basin (SW Morocco) to characterize the sedimentary organic matter. These black shales have a variable bulk and molecular geochemical composition reflecting changes in the quantity and quality of the organic matter. High TOC contents (up to 18wt%) and hydrogen indices between 400 and 800 (mgHC/gTOC) indicate hydrogen-rich organic matter (Type I-II kerogen) which qualifies these laminated black shale sequences as excellent oil-prone source rocks. Low Tmax values obtained from Rock-Eval pyrolysis (404-425 MC) confirm an immature to early mature level of thermal maturation. Organic petrological studies indicate that the kerogen is almost entirely composed of bituminite particles. These unstructured organic aggregates were most probably formed by intensive restructuring of labile biopolymers (lipids and/or carbohydrates), with the incorporation of sulphur into the kerogen during early diagenesis. Total lipid analyses performed after desulphurization of the total extract shows that the biomarkers mostly comprise short-chain n-alkanes (C16-C22) and long-chain (C25-C35) n-alkanes with no obvious odd-over-even predominance, together with steranes, hopanoids and acyclic isoprenoids. The presence of isorenieratane derivatives originating from green sulphur bacteria indicates that dissolved sulphide had reached the photic zone at shallow water depths (~100m) during times of deposition. These conditions probably favoured intensive sulphurization of the organic matter. Flash pyrolysis GC-MS analysis of the kerogen indicates the aliphatic nature of the bulk organic carbon. The vast majority of pyrolysis products are sulphur-containing components such as alkylthiophenes, alkenylthiophenes and alkybenzothiophenes. Abundant sulphurization of the Tarfaya Basin kerogen resulted from excess sulphide and metabolizable organic matter combined with a limited availability of iron during early diagenesis. The observed variability in the intensity of OM sulphurization may be attributed to sea level-driven fluctuations in the palaeoenvironment during sedimentation.
Resumo:
A mass budget was constructed for organic carbon on the upper slope of the Middle Atlantic Bight, a region thought to serve as a depocenter for fine-grained material exported from the adjacent shelf. Various components of the budget are internally consistent, and observed differences can be attributed to natural spatial variability or to the different time scales over which measurements were made. The flux of organic carbon to the sediments in the core of the depocenter zone, at a water depth of 1000 m, was measured with sediment traps to be 65 mg C m**-2 day**-1, of which 6-24 mg C m**-2 day**-1 is buried. Oxygen fluxes into the sediments, measured with incubation chambers attached to a free vehicle lander, correspond to total carbon remineralization rates of 49-70 mg C m**-2 day**-1. Carbon remineralization rates estimated from gradients of Corg within the mixed layer, and from gradients of dissolved ammonia and phosphate in pore waters, sum to only 4-6 mg C m**-2 day**-1. Most of the Corg remineralization in slope sediments is mediated by bacteria and takes place within a few mm of the sediment-water interface. Most of the Corg deposited on the upper slope sediments is supplied by lateral transport from other regions, but even if all of this material were derived from the adjacent shelf, it represents <2% of the mean annual shelf productivity. This value is further lowered by recognizing that as much as half of the Corg deposited on the slope is refractory, having originated by reworking from older deposits. Refractory Corg arrives at the sea bed with an average 14C age 600-900 years older than the pre-bomb 14C age of DIC in seawater, and has a mean life in the sediments with respect to biological remineralization of at least 1000 years. Labile carbon supplied to the slope, on the other hand, is rapidly and (virtually) completely remineralized, with a mean life of < 1 year. Carbon-14 ages of fine-grained carbonate and organic carbon present within the interstices of shelf sands are consistent with this material acting as a source for the old carbon supplied to the slope. Winnowing and export of reworked carbon may contribute to the often-described relationship between organic carbon preservation and accumulation rate of marine sediments.
Resumo:
Benthic oxygen fluxes calculated from in situ microelectrode profiles arc compared with benthic flux chamber O2 uptake measurements on a transect of eight stations across the continental shelf and three stations on the slope of Washington State. Station depths ranged from 40 to 630 m and bottom-water oxygen concentrations were 127-38 µM. The fluxes measured by the two methods were similar on the slope, but on the shelf, the chamber flux exceeded the microelectrode flux by as much as a factor of 3-4. We attribute this difference to pore-water irrigation, a process which apparently accounts for the oxidation of a significant amount of organic C in the continental shelf sediments. Combining our diffusive flux data with other data demonstrates clearly that the bottomwater oxygen concentration must play some significant role in determining the sedimentary oxygen consumption rate. Numerical simulation of the microelectrode 0, profiles suggests that roughly half the diffusive 0, flux must be consumed within - 1 mm of the sediment surface. If this conclusion is correct, then the magnitude of the diffusive flux depends both on the bottom-water oxygen concentration and on the supply rate of labile C to the sediment surf'ace.
Resumo:
Organic petrologic and geochemical analyses were performed on modern and Quaternary organic carbon-poor deep sea sediments from the Equatorial Atlantic. The study area covers depositional settings from the West African margin (ODP Site 959) through the Equatorial Divergence (ODP Site 663) to the pelagic Equatorial Atlantic. Response of organic matter (OM) deposition to Quaternary climatic cycles is discussed for ODP Sites 959 and 663. The results are finally compared to a concept established for fossil deep sea environments [Littke and Sachsenhofer, 1994 doi:10.1021/ef00048a041]. Organic geochemical results obtained from Equatorial Atlantic deep sea deposits provide new aspects on the distribution of sedimentary OM in response to continental distance, atmospheric and oceanographic circulation, and depositional processes controlling sedimentation under modern and past glacial-interglacial conditions. The inventory of macerals in deep sea deposits is limited due to mechanical breakdown of particles, degree of oxidation, and selective remineralization of labile (mostly marine) OM. Nevertheless, organic petrology has a great potential for paleoenvironmental studies, especially as a proxy to assess quantitative information on the relative abundance of marine vs. terrigenous OM. Discrepancies between quantitative data obtained from microscopic and isotopic (delta13Corg) analyses were observed depending on the stratigraphic level and depositional setting. Strongest offset between both records was found close to the continent and during glacial periods, suggesting a coupling with wind-born terrigenous OM from central Africa. Since African dust source areas are covered by C4 grass plants, supply of isotopically heavy OM is assumed to have caused the difference between microscopic and isotopic records.
Resumo:
Dissolved and particulate organic matter was measured during six cruises to the southern Ross Sea. The cruises were conducted during late austral winter to autumn from 1994 to 1997 and included coverage of various stages of the seasonal phytoplankton bloom. The data from the various years are compiled into a representative seasonal cycle in order to assess general patterns of dissolved organic matter (DOM) and particulate organic matter (POM) dynamics in the southern Ross Sea. Dissolved organic carbon (DOC) and particulate organic carbon (POC) were at background concentrations of approximately 42 and 3 µM C, respectively, during the late winter conditions in October. As the spring phytoplankton bloom progressed, organic matter increased, and by January DOC and POC reached as high as 30 and 107 µM C, respectively, in excess of initial wintertime conditions. Stocks and concentrations of DOC and POC returned to near background values by autumn (April). Approximately 90% of the accumulated organic matter was partitioned into POM, with modest net accumulation of DOM stocks despite large net organic matter production and the dominance of Phaeocystis antarctica. Changes in NO3 concentration from wintertime values were used to calculate the equivalent biological drawdown of dissolved inorganic carbon (DICequiv). The fraction of DICequiv drawdown resulting in net DOC production was relatively constant (ca. 11%), despite large temporal and spatial variability in DICequiv drawdown. The C : N (molar ratio) of the seasonally produced DOM had a geometric mean of 6.2 and was nitrogen-rich compared to background DOM. The DOM stocks that accumulate in excess of deep refractory background stocks are often referred to as "semi-labile" DOM. The "semi-labile" pool in the Ross Sea turns over on timescales of about 6 months. As a result of the modest net DOM production and its lability, the role DOM plays in export to the deep sea is small in this region.
Resumo:
Biochemical composition of sedimentary organic matter (OM), vertical fluxes and bacterial distribution were studied at 15 stations (95-2270 m depth) in the Aegean Sea during spring and summer. Downward fluxes of labile OM were significantly higher in the northern than in the southern part and were higher in summer than in spring. Primary inputs of OM were not related to sedimentary OM concentrations, which had highest values in summer. Sedimentary chlorophyll-a concentrations were similar in the northern and southern parts. Carbohydrates, the main component of sedimentary OM, were about 1.2 times higher in the southern part than in the northern, without significant temporal changes. Total proteins were higher in summer and about double in the northern part. Sedimentary proteins appeared more dependent upon the downward flux of phytopigment than of proteins. Sedimentary OM was characterised by a relatively large fraction of soluble compounds and showed better quality in the northern part. The lack of a depth-related pattern in sedimentary OM and the similar concentrations in the two areas suggest that differences in sedimentary OM quality in the Aegean basin are dependent on system productivity; the bulk of sedimentary OM is largely conservative. Sedimentary bacterial density was about double in the northern part and higher in spring than in summer, but bacterial size was about three times higher in summer, resulting in a larger bacterial biomass in summer. Bacterial density was coupled with total and protein fluxes, indicating a rapid bacterial response to pelagic production. Bacterial biomass was significantly correlated with sedimentary protein and phytopigment concentrations, indicating a clear response to accumulation of labile OM in the sediments. In all cases bacteria accounted for <5% of the organic C and N pools. The efficiency of benthic bacteria in exploiting protein pools, estimated as amounts of protein available per unit bacterial biomass, indicates a constant ratio of about 70 µg proteins/µg C. This suggests a similar bacterial efficiency all over the area studied, unaffected by different trophic conditions.
Resumo:
Complex investigations of recent and ancient Black Sea sediments from the outer shelf, continental slope, and deep-water basin of the Russian Black Sea sector have been carried out. Samples were collected during Cruise 100 of R/V Professor Shtokman organized by the P.P. Shirshov Institute of Oceanology (March 2009) and expedition of UZHMORGEO (summer 2006). Rates of the main anaerobic processes during diagenesis (sulfate reduction, dark CO2 assimilation, methanogenesis, and methane oxidation) were studied for the first time in sediment cores of the studied area. Two peaks in the rate of microbial processes and two sources of these processes were identified: the upper peak near the water-sediment contact is related to solar energy (OM substrate of the water column) and the lower peak at the base of ancient Black Sea sediments with high(>1 mmol) methane concentration related to energy of anaerobic methane oxidation. New labile OM formed during this process is utilized by other groups of microorganisms. According to experimental data, daily rate of anaerobic methane oxidation is many times higher than that of methanogenesis, which unambiguously indicates migration nature of the main part of methane.