Dissolved organic matter (DOM) in the oceans constitutes a major carbon pool involved in global biogeochemical cycles. More than 96% of the marine DOM resists microbial degradation for thousands of years. The composition of this refractory DOM (RDOM) exhibits a molecular signature which is ubiquitously detected in the deep oceans. Surprisingly efficient microbial transformation of labile into RDOM was shown experimentally, implying that microorganisms produce far more RDOM than needed to sustain the global pool. By assessing the microbial formation and transformation of DOM in unprecedented molecular detail for 3 years, we show that most of the newly formed RDOM is molecularly different from deep sea RDOM. Only <0.4% of the net community production was channeled into RDOM molecularly undistinguishable from deep sea DOM. Our study provides novel experimentally derived molecular evidence and data for global models on the production, turnover and accumulation of marine DOM.