983 resultados para Centaurea
Resumo:
The distribution of pollen in marine sediments is used to record vegetation changes over the past 30,000 years on the adjacent continent. A transect of marine pollen sequences from the mouth of the river Congo (~5°S) to Walvis Bay and Lüderitz (~25°S) shows vegetation changes in Congo, Angola and Namibia from the last glacial period into the Holocene. The comparison of pollen records from different latitudes provides information about the latitudinal shift of open forest and savannahs (Poaceae pollen), the extension of lowland forest (rain forest pollen) and Afromontane forest (Podocarpus pollen), and the position of the desert fringe (pollen of Caryophyllaceae, Chenopodiaceae and Amaranthaceae). High Cyperaceae pollen percentages in sediments from the last glacial period off the mouth of the river Congo suggest the presence of open swamps rather than savannah vegetation in the Congo Basin. Pollen from Restionaceae in combination with Stoebe-type pollen (probably from Elytropappus) indicates a possible northwards extension of winter rain vegetation during the last glacial period. The record of Rhizophora (mangrove) pollen is linked to erosion of the continental shelf and sea-level rise. Pollen influx is highest off river mouths (10-2000 grains year**-1 cm**-2), close to the coast (300-6000 grains year**-1 cm**-2), but is an order of magnitude lower at sites situated far from the continent (<10 grains year**-1 cm**-2).
Resumo:
Pollen and macrofossil analysis of lake sediments revealed the complete development of vegetation from Riss late-glacial to early Würm glacial times at Samerberg (12°12' E, 47°45' N, 600 m a.s.l) on the northern border of the Alps. The pollen bearing sediments overlie three stratigraphic units, at the base a ground-moraine, then a 13 m thick layer of pollen free silt and clay, and then a younger moraine; all the sediments including the pollen bearing sediments, lie below the Würm moraine. The lake, which had developed in an older glacial basin, became extinct, when the ice of the river Inn glacier filled its basin during Würm full-glacial time at the latest. One interglacial, three interstadials, and the interdigitating treeless periods were identified at Samerberg. Whereas the cold periods cannot be distinguished from one another pollenanalytically, the interglacial and the two older interstadials have distinctive characteristics. A shrub phase with Juniperus initiated reforestation and was followed by a pine phase during the interglacial and each of the three interstadials. The further development of the interglacial vegetation proceeded with a phase when deciduous trees (mainly Quercus, oak) and hazel (Corylus) dominated, though spruce (Picea) was present at the same time in the area. A phase with abundant yew (Taxus) led to an apparently long lasting period with dominant spruce and fir (Abies) accompanied by some hornbeam (Carpinus). The vegetational development shows the main characteristics of the Riss/Würm interglacial, though certain differences in the vegetational development in the northern alpine foreland are obvious. These differences may result from the existence of an altitudinal zonation of the vegetation in the vicinity of the site and are the expression of its position at the border of the Alps. A greater age (e.g. the Holsteinian) can be excluded by reason of the vegetational development, and is also not indicated at first sight from the geological and stratigraphical data of the site. Characteristic of the Riss/Würm vegetational development in southern Germany - at least in the region between Lake Starnberg/Samerberg/Salzach - is the conspicuous yew phase. According to absolute pollen counts, yew not only displaced the deciduous species, but also displaced spruce preferentially, thus indicating climatic conditions less favourable for spruce, caused by mild winters (Ilex spreading!) and by short-term low precipitation, indicated by the reduced sedimentation rate. The oldest interstadials is bipartite, as due to the climatic deterioration the early vegetational development, culminating in a spruce phase, had been interrupted by another expansion of pine. A younger spruce-dominated period with fir and perhaps also with hornbeam and beech (Fagus) followed. An identical climatic development has been reported from other European sites with long pollen sequences (see chapter 6.7). However, different tree species are found in the same time intervals in Middle Europe during Early Würm times. Sediments of the last interglacial (Eem or Riss/Würm) have been found in all cases below the sediments of the bipartite interstadial, and in addition one more interstadial occurs in the overlying sediments. This proves that Eem and Riss/Würm of the north-european plain resp. of the alpine foreland are contemporaneous interglacials although this has been questioned by some authors. The climax vegetation of the second interstadial was a spruce forest without fir and without more demanding deciduous tree species. The vegetational development of the third interstadial is recorded fragmentary only. But it has been established that a spruce forest was present. The oldest interstadial must correspond to the danish Brørup interstadial as it is expressed in northern Germany, the second one to the Odderade interstadial. A third Early Würm interstadial, preserved fragmentarily at Samerberg, is known from other sites. The dutch Amersfoort interstadial most likely is the equivalent to the older part of the bipartite danish Brørup interstadial.
Resumo:
Pollen and spores from a deep-sea core located west of the Niger Delta record an uninterrupted area of lowland rain forest in West Africa from Guinea to Cameroon during the last Interglacial and the early Holocene. During other periods of the last 150 ka, a savanna corridor between the western - Guinean - and the eastern - Congolian - part of the African lowland rain forest existed. This so-called Dahomey Gap had its largest extension during Glacial Stages 6, 4, 3, and 2. Reduced surface salinity in the eastern Gulf of Guinea as recorded by dinoflagellate cysts indicates sufficient precipitation for extensive forest growth during Stages 5 and 1. The large modern extension of dry forest and savanna in West Africa cannot be solely explained by climatic factors. Mangrove expansion in and west of the Niger Delta was largest during the phases of sea-level rise of Stages 5 and 1. During Stages 6, 4, 3, and 2, shelf areas were exposed and the area of the mangrove swamps was minimal.
Resumo:
Based on pollen analysis of a sediment core from the Atlantic Ocean off Liberia the West African vegetation history for the last 400 ka is reconstructed. During the cold oxygen isotope stages 12, 10, 8, 6, 4, 3 and 2 an arid climate is indicated, resulting in a southward shifting of the southern border of the savanna. Late Pleistocene glacial stages were more arid than during the Middle Pleistocene. A persistence of the rain forest in the area, even during the glacial stages, is recorded. This suggests a glacial refuge of rain forest situated in the Guinean mountains. Afromontane forests with Podocarpus occurred in the Guinean mountains from the stages 12 to 2 and disappeared after. The tree expanded from higher to lower elevations twice in the warm oxygen isotope stage 11 (pollen subzones 11d, 11b) and at least twice during the warm stage 5 (pollen subzones 5d, 5a), indicating a relative cool but humid climate for these periods.
Resumo:
Over 100 samples of recent surface sediments from the bottomn of the Atlantic Ocean offshore NW Africa between 34° and 6° N have been analysed palynologically. The objective of this study was to reveal the relation between source areas, transport systems, and resulting distribution patterns of pollen and spores in marine sediments off NW Africa, in order to lay a sound foundation for the interpretation of pollen records of marine cores from this area. The clear zonation of the NW-African vegetation (due to the distinct climatic gradient) is helpful in determining main source areas, and the presence of some major wind belts facilitates the registration of the average course of wind trajectories. The present circulation pattern is driven by the intertropical front (ITCZ) which shifts over the continent between c. 22° N (summer position) and c. 4° N (winter position) in the course of the year. Determination of the period of main pollen release and the average atmospheric circulation pattern effective at that time of the years is of prime importance. The distribution patterns in recent marine sediments of pollen of a series of genera and families appear to record climatological/ecological variables, such as the trajectory of the NE trade, January trades, African Easterly Jet (Saharan Air Layer), the northernmost and southernmost position of the intertropical convergence zone, and the extent and latitudinal situation of the NW-African vegetation belt. Pollen analysis of a series of dated deep-sea cores taken between c. 35° and the equator off NW African enable the construction of paleo-distribution maps for time slices of the past, forming a register of paleoclimatological/paleoecological information.
Resumo:
Palynological investigations in northeastern Bavaria (Bavarian Vogtland, Fichtelgebirge, Steinwald) reveal the Late Glacial and Postglacial history of the regional vegetation. Radiocarbon data in comparison with those from the neighbouring regions (Rhön, Oberpfälzer Wald, Bavarian Forests) show a time lag in the development of the arboreal vegetation due to migration processes. The Fichtelgebirge is the southernmost part ofnortheastern Bavaria where the early Alleröd period (pollen zone IIa) is characterised by a dominance of birch forests. Hazel reached maximal values around 8000 BP in the area from the Fichtelgebirge to the Bavarian Forests, e.g. about 600 years earlier than in the more northern Rhön mountains. For spruce there is a considerable time lag between the Bavarian Forests and the Fichtelgebirge. Spruce spreading started in the Fichtelgebirge during the older part of the Atlantic period (pollen zone VI). At the same time, spruce already was the dominant tree in the Bavarian Forests. During the younger part of the Atlantic period (pollen zone VII) spruce and mixed oak forest tree species frequently occurred in the Fichtelgebirge. At the end of pollen zone VI, spruce came to dominance. At the same time, the immigration of beech started. During the Subboreal period (pollen zone VIII), spruce remained being a dominant member in the forests and at the end of pollen zone VIII, fir began to spread rapidly. During the first part of the Subatlantic period (pollen zone IX) spruce, beech, fir and pine formed the mountainous forests in the Fichtelgebirge. In the area of the Bavarian Vogtland, however, fir was a dominant forest tree during pollen zone IX, while spruce and beech played a less important role. During the 12th century, human colonisation started in the area of the Fichtelgebirge. This is 400 years later as in the area of the Rhön mountains. Indicators for earlier forest clearances are rare or absent.
Resumo:
Distribution patterns of the most important pollen types from southern European and northwest African source areas for the 18,000 years B.P. time slice are reconstructed from pollen records of 14 well-dated deep-sea cores located between 37° and 9°N and compared with the modern pollen distribution in this area. It is concluded that the belt with maximum African Easterly Jet transport did not shift latitudinally during the last glacial-interglacial transition but remained at about 20°N. Furthermore, it is substantiated that the trade winds did not shift latitudinally during the last glacial-interglacial transition. This evidence is not compatible with an atmospheric circulation model that assumes a zone of surface westerlies in the northern part of northwest Africa. Trade winds during glacial episodes did, however, intensify, especially from about 36° to 24° N.
Resumo:
Understanding past human-climate-environment interactions is essential for assessing the vulnerability of landscapes and ecosystems to future climate change. This is particularly important in southern Morocco where the current vegetation is impacted by pastoralism, and the region is highly sensitive to climate variability. Here, we present a 2000-year record of vegetation, sedimentation rate, XRF chemical element intensities, and particle size from two decadal-resolved, marine sediment cores, raised from offshore Cape Ghir, southern Morocco. The results show that between 650 and 850 AD the sedimentation rate increased dramatically from 100 cm/1000 years to 300 cm/1000 years, and the Fe/Ca and pollen flux doubled, together indicating higher inputs of terrestrial sediment. Particle size measurements and end-member modelling suggest increased fluvial transport of the sediment. Beginning at 650 AD pollen levels from Cichorioideae species show a sharp rise from 10% to 20%. Pollen from Atemisia and Plantago, also increase from this time. Deciduous oak pollen percentages show a decline, whereas those of evergreen oak barely change. The abrupt increase in terrestrial/fluvial input from 650 to 850 AD occurs, within the age uncertainty, of the arrival of Islam (Islamisation) in Morocco at around 700 AD. Historical evidence suggests Islamisation led to population increase and development of southern Morocco, including expanded pastoralism, deforestation and agriculture. Livestock pressure may have changed the vegetation structure, accounting for the increase in pollen from Cichorioideae, Plantago, and Artemisia, which include many weedy species. Goats in particular may have played a dominant role as agents of erosion, and intense browsing may have led to the decline in deciduous oak; evergreen oak is more likely to survive as it re-sprouts more vigorously after browsing. From 850 AD to present sedimentation rates, Fe/Ca ratios and fluvial discharge remain stable, whereas pollen results suggest continued degradation. Pollen results from the past 150 years suggest expanded cultivation of olives and the native argan tree, and the introduction of Australian eucalyptus trees. The rapidly increasing population in southern Morocco is causing continued pressure to expand pastoralism and agriculture. The history of land degradation presented here suggests that the vegetation in southern Morocco may have been degraded for a longer period than previously thought and may be particularly sensitive to further land use changes. These results should be included in land management strategies for southern Morocco.
Resumo:
Im Fichtelgebirge, im Harz und in der Rhön wurden die spätglazialen und frühpostglazialen Ablagerungen von vier Mooren in 625-805 m Meereshöhe pollenanalytisch hinsichtlich von Makrofossilien (Samen, Früchte) und stratigraphisch untersucht. 1. Nur im Fichtelgebirge konnte in 625 m Höhe ein vollständiger Spätglazialablauf aufgedeckt werden. Es handelt sich dabei um einen ehemaligen kleinen See südlich Fichtelberg, der wahrscheinlich durch Tieftauen eines begrabenen Firn- oder Schneefeldes entstand. Betula pubescens wurde kontinuierlich vom Ende der Älteren Tundrenzeit bis zum Boreal nachgewiesen. Auf nahe Vorkommen von Kiefern darf man seit IIb (Jüngere Allerödzeit) schließen, sie wurden aber durch die Jüngere Tundrenzeit, während der es noch zu Solifluktionserscheinungen kam, von ihren höher gelegenen Standorten wieder verdrängt. Die allerödzeitlichen Birken- bzw. Birkenkiefernwälder müssen in diesen Höhen noch licht oder parkartig gewesen sein. Verbreitet waren Rasengesellschaften, die hauptsächlich aus Gramineen und Artemisia bestanden. Auch Beutla nana und Pollen von Ephedra cf. distachya wurden nachgewiesen. In der Seelohe (770-780 m) ist nur der Ausklang einer waldarmen Zeit, offensichtlich der Jüngeren Tundrenzeit, erfaßt. Großreste von Bäumen fehlen. 2. Im Oberharz (Radauer Born, 800 m) wurde nur ein kurzes Stück der Jüngeren Tundrenzeit aufgedeckt. Großreste von Bäumen fehlen hier ebenfalls. Aus dem Praeboreal stammt der erst fossile Nachweis von Betuala nana im Oberharz. Die Zwergbirke wächst auf dem Moor noch heute und gilt hier als Eiszeitrelikt. 3. Eine Datierung der spätglazialen Ablagerungen vom Roten Moor in der Rhön ist zur Zeit nur mit Vorbehalt möglich. Zwar wurde hier der Laacher Bimstuff gefunden, er ist jedoch umgelagert und unmittelbar über dem Tuffhorizont befindet sich eine Schichtlücke. Wahrscheinlich zeigt die Bimsstuffschicht aber doch noch den Allerödhorizont an. 4. Während der Jüngeren Tundrenzeit dürfte im Fichtelgebirge die Waldgrenze bei etwas 600 m gelegen haben. Das bedeutet gegenüber der heutigen Waldgrenze eine Erniedrigung um rund 700 m. Am Schluß der Älteren Tundrenzeit lag die Waldgrenze wahrscheinlich wie in der Allerödzeit höher als 600-650 m, aber unter 800 m. 5. Pollenkörner der Ericalen sind in den Ablagerungen aus dem Harz wesentlich häufiger als in den anderene Gebieten. Häufungen von Ericalen-pollen sind besonders für Spätglazialablagerungen solcher Gebiete charakteristisch, die heute im subozeanischen oder ozeanischen Klimabereich liegen (Niederlande, Irland). 6. Während sich die Bodengegensätze in der heutigen Vegetation der drei Untersuchungsgebiete sehr deutlich bemerkbar machen, wurden keine nennenswerten Unterschiede im spätglazialen Pollenniederschlag der drei Mittelgebirge gefunden. Vermutlich erfolgte die Auswaschung der Nährstoffe aus den an sich nährstoffkräftigen Granitverwitterungsböden während der Späteiszeit nicht so rasch, wie es heute der Fall ist. Die Niederschlagsmengen dürften geringer und das Klima weniger humid gewesen sein. 7. In der Liste der spätglazialen Pflanzen überwiegen die Arten mit borealzirkumpolarer Verbreitung. Arktisch-alpine Arten treten zurück. Kontinentale und subatlantische bzw. subozeanische Arten sind etwa gleich stark vertreten.
Resumo:
Die pollenanalytische Untersuchung des Rotmooses in Verbindung mit C-14 Daten hat ergeben, daß die organogenen Sedimente nachwärmezeitliche Bildungen sind. Ein Gletschervorstoß um 2500 v. Chr. konnte mit Hilfe der C-14 Daten eingegrenzt und mit anderen Fundstellen parallelisiert werden. Weitere pollenanalytisch festgestellte Gletscher und auch Waldgrenzschwankungen konnten festgestellt, müssen aber noch genau datiert und parallelisiert werden.
Resumo:
Some years ago a fossil lake basin was found in the northeastern part of the former Rhine-pied- mont-glacier, situated between the endmoraine system ofthe elassical Riß- andWürm glacia- tions, respectively. The lacustrine sediments contain the pollenflora ofthe Eemian interglacial. They are intensively thrusted. These sediments are eovered by a loam-layer, rieh in elasts. The thickness of this loam-layer varies between at least 170 and 400 cm. It consists in its major part of loess-loam and solifluction material. Yet just on top of the lake sediments mentioned an in- tensively compressed loam, characterized by quarzgrains with all features of glacially pressed material, together with striated elasts is met with. It strongly resembles atil!. Ifthis is true, the stratigraphie division ofthe last glaciation strongly deviates from the hitherto accepted scheme, incorporating an early glacier advance, long before the elassical young-endmoraine systems of the Würm glaciation were formed.
Resumo:
Remains of diatoms, molluscs, ostracods, foraminifera and pollen exines preserved in the sediments of Lago d'Averno, a volcanic lake in the Phlegrean Fields west of Naples, allowed us to reconstruct the changes in the ecological conditions of the lake and of the vegetation around it for the period from 800 BC to 800 AD. Lago d'Averno was at first a freshwater lake, temporarily influenced by volcanic springs. Salinity increased slowly during Greek times as a result of subsidence of the surrounding land. Saline conditions developed only after the lake was connected with the sea by a canal, when Portus Julius was built in 37 BC. The first post-Roman period of uplift ended with a short freshwater phase during the 7th century after Christ. Deciduous oakwoods around the lake was transformed into a forest of evergreen oaks in Greek times and thrived there - apparently almost uninfluenced by man - until it was felled, when the Avernus was incorporated into the new Roman harbour in 37 BC, to construct a shipyard and other military buildings there. Land-use was never more intense than during Roman times and weakest in Greek and Early Roman times, when the Avernus was considered a holy place, the entrance to the underworld.
Resumo:
Reinvestigation of the Odderade Interstadial in its type locality led to an augmentation of the flora list and correction of some misinterpretations (e.g. Omorica, Frangula). The Eemian, stadials FW 1 and 3, and the interstadials Amersfoort/Broerup and Odderade have been manifested by pollen analyses. FW 1 and FW 3 are probably not completely free from forested areas. The new pollen diagrams considered with older data from Odderade, and in comparison with other regions in Central Europe, fit essentially with the classification and development of Vegetation during the Early Weichselian in Oerel by Behre & Lade (1986).