107 resultados para Big Creek Lake Site
Resumo:
High- and low-latitude forcing of terrestrial African paleoclimate variability is demonstrated using 900 ka eolian and biogenic component records from Ocean Drilling Program site 663 in the eastern equatorial Atlantic. Terrigenous (eolian dust) and phytolith (savannah grass cuticle) accumulation rate records vary predominantly at 100 and 41 kyr periodicities and spectral phase estimates implicate high-latitude forcing. The abundance of freshwater diatoms (Melosira) transported from dry African lake beds varies coherently at 23-19 kyr orbital periodicities and at a phasing which implicates low-latitude precessional monsoon forcing. Modeling studies demonstrate that African climate is sensitive to both high- and low-latitude boundary conditions. African monsoon intensity is modulated by direct insolation variations due to orbital precession, whereas remote high-latitude forcing can be related to cool North Atlantic sea surface temperatures (SSTs) which promote African aridity and enhance dust-transporting wind speeds. The site 663 terrigenous and phytolith records covary with North Atlantic SST variability at 41 °N (site 607). We suggest that Pleistocene African climate has responded to both high-latitude North Atlantic SST variability as well as low-latitude precessional monsoon forcing; the high-latitude influence dominates the sedimentary record. Prior to circa 2.4 Ma, terrigenous variations occurred primarily at precessional periodicities (23-19 kyr), indicating that African climate was largely controlled by low-latitude insolation variations prior to the onset of high-amplitude glacial-interglacial climate change.
Resumo:
The Toba lake event, the Australasian microtektite event, and the Cretaceous/Paleogene boundary were analyzed on the basis of foraminifers, carbonate content, trace elements, and spherules (microtektites). The Toba ash event, recovered in Hole 758C, may have had minor influences on the foraminiferal populations. The Australasian tektite event has probably some influence on foraminiferal ecology, because the larger specimens become scarce just above the microtektite layer. Microtektites recovered from Hole 758B closely resemble spherules recovered from several Cretaceous/Paleogene boundary localities in North America. The Cretaceous/Paleogene spherules, however, are usually larger and are completely altered to goyazite in the terrestrial environment and to smectite in a marine environment. The Cretaceous/Paleogene boundary of Hole 752B does not show obvious anomalous trace-element concentrations, and iridium concentrations are below our detection limits. The trace-element pattern is dominated by the alternation of chalk with volcanic ash layers above the Cretaceous/Paleogene boundary.
Resumo:
Pollen and macrofossil analysis of lake sediments revealed the complete development of vegetation from Riss late-glacial to early Würm glacial times at Samerberg (12°12' E, 47°45' N, 600 m a.s.l) on the northern border of the Alps. The pollen bearing sediments overlie three stratigraphic units, at the base a ground-moraine, then a 13 m thick layer of pollen free silt and clay, and then a younger moraine; all the sediments including the pollen bearing sediments, lie below the Würm moraine. The lake, which had developed in an older glacial basin, became extinct, when the ice of the river Inn glacier filled its basin during Würm full-glacial time at the latest. One interglacial, three interstadials, and the interdigitating treeless periods were identified at Samerberg. Whereas the cold periods cannot be distinguished from one another pollenanalytically, the interglacial and the two older interstadials have distinctive characteristics. A shrub phase with Juniperus initiated reforestation and was followed by a pine phase during the interglacial and each of the three interstadials. The further development of the interglacial vegetation proceeded with a phase when deciduous trees (mainly Quercus, oak) and hazel (Corylus) dominated, though spruce (Picea) was present at the same time in the area. A phase with abundant yew (Taxus) led to an apparently long lasting period with dominant spruce and fir (Abies) accompanied by some hornbeam (Carpinus). The vegetational development shows the main characteristics of the Riss/Würm interglacial, though certain differences in the vegetational development in the northern alpine foreland are obvious. These differences may result from the existence of an altitudinal zonation of the vegetation in the vicinity of the site and are the expression of its position at the border of the Alps. A greater age (e.g. the Holsteinian) can be excluded by reason of the vegetational development, and is also not indicated at first sight from the geological and stratigraphical data of the site. Characteristic of the Riss/Würm vegetational development in southern Germany - at least in the region between Lake Starnberg/Samerberg/Salzach - is the conspicuous yew phase. According to absolute pollen counts, yew not only displaced the deciduous species, but also displaced spruce preferentially, thus indicating climatic conditions less favourable for spruce, caused by mild winters (Ilex spreading!) and by short-term low precipitation, indicated by the reduced sedimentation rate. The oldest interstadials is bipartite, as due to the climatic deterioration the early vegetational development, culminating in a spruce phase, had been interrupted by another expansion of pine. A younger spruce-dominated period with fir and perhaps also with hornbeam and beech (Fagus) followed. An identical climatic development has been reported from other European sites with long pollen sequences (see chapter 6.7). However, different tree species are found in the same time intervals in Middle Europe during Early Würm times. Sediments of the last interglacial (Eem or Riss/Würm) have been found in all cases below the sediments of the bipartite interstadial, and in addition one more interstadial occurs in the overlying sediments. This proves that Eem and Riss/Würm of the north-european plain resp. of the alpine foreland are contemporaneous interglacials although this has been questioned by some authors. The climax vegetation of the second interstadial was a spruce forest without fir and without more demanding deciduous tree species. The vegetational development of the third interstadial is recorded fragmentary only. But it has been established that a spruce forest was present. The oldest interstadial must correspond to the danish Brørup interstadial as it is expressed in northern Germany, the second one to the Odderade interstadial. A third Early Würm interstadial, preserved fragmentarily at Samerberg, is known from other sites. The dutch Amersfoort interstadial most likely is the equivalent to the older part of the bipartite danish Brørup interstadial.
Resumo:
Seagrasses are ecosystem engineers that offer important habitat for a large number of species and provide a range of ecosystem services. Many seagrass ecosystems are dominated by a single species; with research showing that genotypic diversity at fine spatial scales plays an important role in maintaining a range of ecosystem functions. However, for most seagrass species, information on fine-scale patterns of genetic variation in natural populations is lacking. In this study we use a hierarchical sampling design to determine levels of genetic and genotypic diversity at different spatial scales (centimeters, meters, kilometers) in the Australian seagrass Zostera muelleri. Our analysis shows that at fine-spatial scales (< 1 m) levels of genotypic diversity are relatively low (R (Plots) = 0.37 ± 0.06 SE), although there is some intermingling of genotypes. At the site (10's m) and meadow location (km) scale we found higher levels of genotypic diversity (R (sites) = 0.79 ± 0.04 SE; R (Locations) = 0.78 ± 0.04 SE). We found some sharing of genotypes between sites within meadows, but no sharing of genotypes between meadow locations. We also detected a high level of genetic structuring between meadow locations (FST = 0.278). Taken together, our results indicate that both sexual and asexual reproduction are important in maintaining meadows of Z. muelleri. The dominant mechanism of asexual reproduction appears to occur via localised rhizome extension, although the sharing of a limited number of genotypes over the scale of 10's of metres could also result from the localised dispersal and recruitment of fragments. The large number of unique genotypes at the meadow scale indicates that sexual reproduction is important in maintaining these populations, while the high level of genetic structuring suggests little gene flow and connectivity between our study sites. These results imply that recovery from disturbances will occur through both sexual and asexual regeneration, but the limited connectivity at the landscape-scale implies that recovery at meadow-scale losses is likely to be limited.
Resumo:
Vertical permeability testing was conducted on four samples collected from Site 1109, a borehole advanced during Ocean Drilling Program Leg 180. Closed conditions were applied during each test, and the samples were measured using a constant flow approach and permeant solutions that matched the geochemistry of nearby interstitial waters. Vertical permeabilities measured at 34.5 kPa effective stress generally decreased with depth and ranged from 10**-14 m**2 at 212.53 meters below seafloor (mbsf) to 10**-18 m**2 at 698.10 mbsf. The three deepest samples differed in permeability by less than one order of magnitude. Reconsolidation testing on the shallowest sample yielded a minimum permeability of 1.56 x 10**-16 m**2 at 276 kPa effective stress. Subsequent rebound testing yielded a hysteresis-type curve, with the final permeability measuring lower than the initial permeability by nearly 1.5 orders of magnitude. Dilution experiments indicated that use of a permeant solution matching the geochemistry of the interstitial waters may be necessary for accuracy in measurements and mitigation of clay swellage and collapse during testing, but further research is mandated.
Resumo:
Ice-rich permafrost landscapes are sensitive to climate and environmental change due to the melt-out of ground ice during thermokarst development. Thermokarst processes in the northern Yukon Territory are currently not well-documented. Lake sediments from Herschel Island (69°36'N; 139°04'W) in the western Canadian Arctic provide a record of thermokarst lake development since the early Holocene. A 727 cm long lake sediment core was analyzed for radiographic images, magnetic susceptibility, granulometry, and biogeochemical parameters (organic carbon, nitrogen, and stable carbon isotopes). Based on eight calibrated AMS radiocarbon dates, the sediment record covers the last ~ 11,500 years and was divided into four lithostratigraphic units (A to D) reflecting different thermokarst stages. Thermokarst initiation at the study area began ~ 11.5 cal ka BP. From ~ 11.5 to 10.0 cal ka BP, lake sediments of unit A started to accumulate in an initial lake basin created by melt-out of massive ground ice and thaw subsidence. Between 10.0 and 7.0 cal ka BP (unit B) the lake basin expanded in size and depth, attributed to talik formation during the Holocene thermal maximum. Higher-than-modern summer air temperatures led to increased lake productivity and widespread terrain disturbances in the lake's catchment. Thermokarst lake development between 7.0 and 1.8 cal ka BP (unit C) was characterized by a dynamic equilibrium, where lake basin and talik steadily expanded into ambient ice-rich terrain through shoreline erosion. Once lakes become deeper than the maximum winter lake ice thickness, thermokarst lake sediments show a great preservation potential. However, site-specific geomorphic factors such as episodic bank-shore erosion or sudden drainage through thermo-erosional valleys or coastal erosion breaching lake basins can disrupt continuous deposition. A hiatus in the record from 1.8 to 0.9 cal ka BP in Lake Herschel likely resulted from lake drainage or allochthonous slumping due to collapsing shore lines before continuous sedimentation of unit D recommenced during the last 900 years.
Resumo:
A palynological investigation of a Holocene profile from Lake Voulkaria, western Greece, was carried out as a contribution to the environmental history of the coastal area of northwestern Acarnania and the Classical city of Palairos. It shows that deciduous oaks dominated the natural vegetation of the area throughout the Holocene. Until ca. 7000 B.C. Pistacia occurred abundantly, while other evergreen woody taxa were rare. At ca. 6300 B.C. an expansion of Carpinus orientalis/Ostrya can be observed. Around ca. 5300 B.C. spreading of Erica indicates a change to a drier climate and/or first human impact. Since ca. 3500 B.C. an increase of evergreen shrubs now clearly indicates land-use. The foundation of the Classical city of Palairos led to a temporary expansion of Phillyrea maquis. Within this period, molluscs of brackish water indicate the use of the lake as a harbour after the construction of a connection to the sea. The deciduous Quercus woodland recovered when human impact decreased in the area, and lasted until modern times.