731 resultados para Gravel
Resumo:
An extensive radiograph study of 24 undisturbed, up to 206-cm long box and gravity cores from the western part of the Strait of Otranto revealed a great variety of primary bedding structures and secondary burrowing features. The regional distribution of the sediments according to their structural, textural, and compositional properties reflects the major morphologic subdivisions of the strait into shelf, slope, and trough bottom (e.g., the bottom of the northern end of the Corfu-Kephallinia Trough, which extends from the northeastern Ionian Sea into the Strait of Otranto): (1) The Apulian shelf (0 to -170m) is only partly covered by very poorly sorted, muddy sands without layering. These relict(?) sands are rich in organic carbonate debris and contain glauconite and reworked (?Pleistocene) ooids. (2) The slope sediments (-170 to -1,000 m) are poorly sorted, sandy muds with a high degree of burrowing. One core (OT 5) is laminated and shows slump structures. An origin of these slumped sediment masses from older deposits higher on the slope was inferred from their abnormal compaction, color, texture, organic content, and mineral composition. (3) Cores from the northern end of the Corfu-Kephallinia Trough (-980 to -1,060 m) display a few graded sand layers, 2-5 cm (maximum 30 cm) thick with parallel and ripple-cross-laminations, deposited by oceanic bottom or small-scale turbidity currents. They are intercalated with homogeneous lutite. (4) Hemipelagic sediments prevail in the more southerly part of the Corfu-Kephallinia Trough and on the "Apulian-Ionian Ridge", the southern submarine extension of the Apulian Peninsula. Below a core depth of 160 cm, these cores have a laminated ("varved") zone, representing an Early Holocene (Boreal-Atlanticum) "stagnation layer" (14C age approximately 9,000 years). The terrigenous components of the surface sediments as well as those of the deeper sand layers can be derived from the Apulian shelf and the Italian mainland (Cretaceous Apulian Plateau and Gargano Mountains, southern Apennines, volcanic province of the Monte Vulture). Indicated by the heavy mineral glaucophane, a minor proportion of the sedimentary material is probably of Alpine origin. If this portion is considered to be first-cycle clastic material it reaches the Strait of Otranto after a longitudinal transport of 700 km via the Adriatic Sea. The lack of phyllosilicates in the coarse- to medium-grained shelf samples might be explained by the activity of the "Apulian Current" (surface velocities up to 4 knots) which in the past possibly has affected the bottom almost down to depths of the shelf edge. The percentage of planktonic organisms, and also the plankton: benthos ratio in the sediments is a useful indicator for bathymetry (depth zonation).
Resumo:
Die Genese von Mangan-Eisen-Akkumulaten der Kieler Bucht wurde durch In-situ-Experimente vor allem in Tauchgängen unter Berücksichtigung der hydrographischen und sedimentologischen Gegebenheiten sowie natürlicher Akkumulatvorkommen und Krusten auf künstlichen Substraten untersucht. An den diagenetisch gebildeten Akkumulaten wurden chemische Zusammensetzung, Mineralogie, physikalische Parameter, Morphologie und Internstrukturen untersucht. Wichtige Faktoren für die Entstehung der Mangan-Eisen-Akkumulate sind geringe Sedimentationsraten am Entstehungsort, das Vorhandensein geeigneter Anlagerungskerne sowie ausreichende Zufuhr von gelöstem Mangan und anderen Metallen durch Diffusion aus dem Sediment und durch lateralen Transport im freien Wasser vor allem im Sommer und Frühherbst infolge absinkender Sauerstoffgehalte im Bodenwasser der Rinnen. Die Experimente ergaben eine saisonale Abscheidungscharakteristik der Mangan-Eisen-Oxide in Abhängigkeit von der hydrographischen Jahresentwicklung mit niedrigen Zuwachsraten im Winter und Frühjahr und hohen Werten im Sommer und Herbst. Die 1981 experimentell ermittelte Wachstumsrate liegt im Bereich der südlichen Kieler Bucht (Boknis Eck) bei ca. 20 mm/1000 a. Für das Vorkommen vor Schleimünde wurden in Anlehnung an SUESS & DJAFARI (1977) 30-50 mm/1000 a berechnet. Unter reduzierenden Bedingungen infolge Sedimentüberdeckung können Mangan-Eisen-Akkumulate partiell oder vollständig wieder aufgelöst werden. Für den Verbleib der Akkumulate an der Sedimentoberfläche wird die Bedeutung der Seenelke Metridium senile nachgewiesen.
Resumo:
Knots arrive on Ellesmere Island in late May or early June. At Hazen Camp small flocks were present on 3 June 1966, but the main influx occurred 5 June when many flocks were seen ranging in size from 6 to 60 individuals. The sexes appeared to arrive together, but the manner of pair-formation was not determined. By 7 June pairs were distributed over the tundra with large feeding flocks forming at snowfree wet marshy areas. Most nests were on Dryas-hummocked slopes and tundra, either dry or moist, with some on clay plains and summits in a mixed Dryas and Salix vegetation. A census area of 240 ha supported at least 3 breeding pairs, and possibly 5; the total number of pairs breeding in the Hazen Camp study area was estimated to be about 25 (1.09 pairs/km**2). Egg-laying (4 nests) extended from 15 to 28 June, with 3 of the 4 sets completed between 20 and 23 June. Both sexes incubated, one of the pair more regularly than the other. The song-flight display of the male was performed most frequently during egglaying and incubation. The incubation period of the last egg in one clutch was established as being between 21.5 and 22.4 days. Four nests hatched between 12 and 20 July, and the hatching period of the entire clutch was less than 24 hours. Four of 7 nests (57 %) survived and egg survival (53 %) was low. Families left the nesting area so on after hatching, concentrating at ponds where food was readily available for the young. Both adults attended the young during the pre-fledging period, but the females apparently departed before the young had hedged. Males left once the young could fly and the adult fall migration was complete by early August. Most 01 the young departed belore mid-August. Fall migration is complete by late August or early September. The breeding season appears to be timed to peak load supply for the young. Adult Chironomidae emergence was highest between 3 and 17 July, the period during which most successful nests hatched. The increasing scarcity of adult insects for the young after mid-July was offset by family movements over the tundra and the early departure of half the adult population. Food also seemed to influence the distribution of breeding pairs aver the tundra, restricting them to the general vicinity of marshes, streams, and ponds where food is most available when the young hatch. Territoriality in the Knot appears to be closely associated with the protection of the nest against predators and has at least a local effect in regulating the number of breeding pairs. Plant material was important in the diet of adult Knots throughout the summer and the primary food from the time of arrival until mid-June. After mid-June the percentage of animal matter increased as dipterous insects became available (especially adult Chironomidae), but plant materials continued to constitute a large part of the diet, usually more than 50 %. The food of the young before fledging consisted principally of adult chironomids.
Resumo:
The upper Miocene to Pleistocene sediments recovered at ODP Sites 745 and 746 in the Australian-Antarctic Basin are characterized by cyclic facies changes. Sedimentological investigations of a detailed Quaternary section reveal that facies A is dominated by a high content of siliceous microfossils, a relatively low terrigenous sediment content, an ice-rafted component, low concentrations of fine sediment particles, and a relatively high smectite content. This facies corresponds to interglacial sedimentary conditions. Facies B, in contrast, is characteristic of glacial conditions and is dominated by a large amount of terrigenous material and a smaller opaline component. There is also a prominent ice-rafted component. The microfossils commonly are reworked and broken. The clay mineral assemblages show higher proportions of glacially derived illite and chlorite. A combination of four different processes, attributed to glacial-interglacial cycles, was responsible for the cyclic facies changes during Quaternary time: transport by gravity, ice, and current and changes in primary productivity. Of great importance was the movement of the grounding line of the ice shelves, which directly influenced the intensity of ice rafting and of gravitational sediment transport to the deep sea. The extension of the ice shelves was also responsible for the generation of cold and erosive Antarctic Bottom Water, which controlled the grain-size distribution, particularly of the fine fraction, in the investigated area.
Resumo:
High-nutrient tropical carbonate systems are known to produce sediments that, in terms of skeletal composition, are reminiscent of their extra-tropical counterparts. Such carbonate systems and associated carbonate grain assemblages in the tropics are rare in the present-day world. Nonetheless, it is crucial to gain a better understanding of those ecosystems, including their drivers and players because such settings potentially represent models for ancient depositional systems as well as for predicted future environmental conditions. One of the modern occurrences of eutrophic tropical carbonate systems is the northern Mauritanian Shelf. The marine environment is characterized by an eastern boundary upwelling system that pushes cool and nutrient-rich intermediate waters onto a wide epicontinental platform (Golfe d'Arguin) where the waters warm up to tropical temperatures. The resulting facies is mixed carbonate-siliciclastic with a dominant foramol association grading into bimol and barnamol grain assemblages in the shallowest areas forming the Banc d'Arguin. Besides this cool water-related heterozoan association, the carbonate sediment is characterized by tropical molluskan species, while chlorozoan biota (e.g., corals and algal symbiont-bearing foraminifers) are entirely absent. We here present a first comprehensive facies analysis of this model example of eutrophic tropical carbonates. Furthermore, we reconstruct the loci of carbonate production and provide a conclusive depositional model of the Banc d'Arguin that received little attention to date due to its poorly accessible nature.
Resumo:
From the south-eastern Tyrrhenian deep-sea floor, four sediment cores of "Meteor" cruise 22 (1971) are described. These cores were taken in the basin between the Aeolian Islands and the Marsili Seamount, an elevation of more tha 3000 m above the sea floor. The sedimentation of the deep-sea basin is distinguished by a sequence of turbidites with a high sedimentation rate. The composition of the clastic material and the position of the cores in the mouth area of the morphologically very pronounced Stromboli Canyon suggest an interpretation of the turbidite sequence as fan of this canyon onto the deep-sea floor. A white rhyolitic pumice-tephra at the base of the 4 m thick sequence of turbidites in core M22-102 has been correlated with the Pelato eruption of the island of Liparo in the 6th century A.D. At the foot of the Marsili Seamount - apparently in morphologically elevated positions - the influence of the turbidite sedimentation increases, the rate of sedimentation is lower and stratigraphic omissions are probable. Here, rather compacted globigerina marls have been found in only 15 -25 cm depth. In addition, volcanic material in the form of lapilli layers, palagonitized ashes and detrital volcanic sands of the Marsili Seamount have been encountered in this area. An up to 3 cm thick layer of completely palagonitized basaltic ash intercalates with the marls at the base of two cores. Layers of very fresh olivine basaltic lapilli in core 103 and palagonitized lapilli of latitic composition in core 104 testify to an explosive submarine volcanism of the Marsili Seamount. According to the stratigraphy of core 103, the latest manifestations of this basaltic volcanism belong to the late Pleistocene (Emiliana huxleyi-zone of Nannoplankton stratigraphy) The basaltic lapilli are glassy to perhyaline with phenocrysts or microphenocrysts predominantely of olivine. The petrological character of the basaltic volcanites with high MgO, Ni, Cr and high MgO/FeO- and Ni/Co-ratios exhibits primitive basaltic features. These basalts clearly differ from basalts of the ocean floors, mid-ocean ridges and marginal basins. Prominent features are a missing iron-enrichment trend and low TiO2. Al2O3 tends to be high, as well as K2O and related trace elements (Ba, Sr). In spite of silica undrsaturation and high color index, the Marsili basalt exhibit some analogies with the calcalkaline basalts of the Aeolian arc, as well as the undersaturated basalts of some other circumoceanic areas.
Resumo:
Results of pedogeomorphological, geochronological and paleobotanical investigations are presented covering the last ca. 4,000 years. The study sites are located in the heavily degraded Kyichu River catchment around Lhasa at 3,600-4,600 m a.s.l. Repeatedly, colluvial sediments have been recorded overlying paleosols. These deposits can be divided into i) coarse-grained sediments with a high proportion of stones and boulders originating from alluvial fans and debris flows, ii) matrix supported sediments with some stones and boulders originating from mudflows or combined colluvial processes such as hillwash plus rock fall, and iii) fine-grained sediments originating from hill wash. The IRSL multi-level dating of profile QUG 1 points to a short-time colluvial sedimentation between 1.0 ± 0.1 and 0.8 ± 0.1 ka. In contrast, dated paleosols of profile GAR 1 (7,908 ± 99 and 3,668 ± 57 BP) encompass a first colluvial episode. Here, the upper colluvial sedimentation took place during several periods between 2.6 ± 0.3 and 0.4 ± 0.1 ka. For the first time in Tibet, a systematic extraction, determination and dating of charcoals from buried paleosols was conducted. The charcoals confirm the Late Holocene presence of juniper forests or woodlands in a now treeless, barren environment. A pollen diagram from Lhasa shows a distinct decline of pollen of the Jumperus-type around 4,140 ± 50 BP, which is interpreted as indicating a clearing of forests on the adjacent slopes. It is assumed that the environmental changes from forests to desertic rangelands since ca. 4,000 BP have been at least reinforced by humans.
Resumo:
Lithology, heavy mineral associations, and chemical composition of bottom sediments studied in two gravity cores from Isfjord, Western Spitsbergen (Svalbard) accompanied by high-frequency seismic records, provide a new insight on provenance and glaciomarine sedimentation in the fjord from the last deglaciation through Holocene.
Resumo:
The monograph has been written on the base of data obtained from samples and materials collected during the 19-th cruise of RV ''Akademik Vernadsky'' to the Northern and Equatorial Indian Ocean. Geological features of the region (stratigraphy, tectonic structure, lithology, distribution of ore-forming components in bottom sediments, petrography of igneous rocks, etc.) are under consideration. Regularities of trace element concentration in Fe-Mn nodules, nodule distribution in bottom sediments, and engineering-geological properties of sediments within the nodule fields have been studied. Much attention is paid to ocean crust rocks. The wide range of ore mineralization (magnetite, chromite, chalcopyrite, pyrite, pentlandite, and other minerals) has been ascertained.
Resumo:
A sedimentological and palynological study of three sediment cores from the northern Mekong River Delta shows the regional sedimentary and environmental development since the mid-Holocene sea level highstand. A sub- to intertidal flat deposit of mid-Holocene age is recorded in the northernmost core. Shoreline deposits in all three cores show descending ages from N to S documenting 1) the early stages of the late Holocene regression and 2) the subsequent delta progradation. The delta plain successions vary from floodplain deposits with swamp-like elements to natural levee sediments. The uppermost sediments in all cores show human disturbance to varying degrees. The most intense alteration is recorded in the northernmost core where the palynological signal together with a charcoal peak indicates the profound change of the environment during the modern land reclamation. The sediments from at least one of the three presented cores do not show a "true" delta facies succession, but rather estuary-like features, as also observed in records from southern Cambodia. This absence is probably due to lack of accommodation space during the initial phase of rapid delta progradation which impeded the development of "true" delta successions as shown in cores from the southern Mekong River Delta.
Resumo:
Beringian climate and environmental history are poorly characterized at its easternmost edge. Lake sediments from the northern Yukon Territory have recorded sedimentation, vegetation, summer temperature and precipitation changes since ~16 cal ka BP. Herb-dominated tundra persisted until ~14.7 cal ka BP with mean July air temperatures less than or equal to 5 °C colder and annual precipitation 50 to 120 mm lower than today. Temperatures rapidly increased during the Bølling/Allerød interstadial towards modern conditions, favoring establishment of Betula-Salix shrub tundra. Pollen-inferred temperature reconstructions recorded a pronounced Younger Dryas stadial in east Beringia with a temperature drop of ~1.5 °C (~2.5 to 3.0 °C below modern conditions) and low net precipitation (90 to 170 mm) but show little evidence of an early Holocene thermal maximum in the pollen record. Sustained low net precipitation and increased evaporation during early Holocene warming suggest a moisture-limited spread of vegetation and an obscured summer temperature maximum. Northern Yukon Holocene moisture availability increased in response to a retreating Laurentide Ice Sheet, postglacial sea level rise, and decreasing summer insolation that in turn led to establishment of Alnus-Betula shrub tundra from ~5 cal ka BP until present, and conversion of a continental climate into a coastal-maritime climate near the Beaufort Sea.
Resumo:
Bulk chemical fine-grained sediment compositions from southern Victoria Land glacimarine sediments provide significant constraints on the reconstruction of sediment provenance models in the McMurdo Sound during Late Cenozoic time. High-resolution (~ 1 ka) geochemical data were obtained with a non-destructive AVAATECH XRF Core Scanner (XRF-CS) on the 1285 m long ANDRILL McMurdo Ice Shelf Project (MIS) sediment core AND-1B. This data set is complemented by high-precision chemical analyses (XRF and ICP-OES) on discrete samples. Statistical analyses reveal three geochemical facies which are interpreted to represent the following sources for the sediments recovered in the AND-1B core: 1) local McMurdo Volcanic Group (MVG) rocks, 2) Transantarctic Mountain rocks west of Ross Island (W TAM), and 3) Transantarctic Mountain rocks from more southerly areas (S TAM). Data indicate in combination with other sediment facies analyses (McKay et al., 2009, doi:10.1130/B26540.1) and provenance scenarios (Talarico and Sandroni, 2009, doi:10.1016/j.gloplacha.2009.04.007) that diamictites at the drill site are largely dominated by local sources (MVG) and are interpreted to indicate cold polar conditions with dry-based ice. MVG is interpreted to indicate cold polar condition with dry-based ice. A mixture of MVG and W TAM is interpreted to represent polar conditions and the S TAM facies is interpreted to represent open-marine conditions. Down-core variations in geochemical facies in the AND-1B core are interpreted to represent five major paleoclimate phases over the past 14 Ma. Cold polar conditions with major MVG influence occur below 1045 mbsf and above 120 mbsf. A section of warmer climate conditions with extensive peaks of S TAM influence characterizes the rest of the core, which is interrupted by a section from 525 to 855 mbsf of alternating influences of MVG and W TAM.