High-nutrient tropical carbonate systems are known to produce sediments that, in terms of skeletal composition, are reminiscent of their extra-tropical counterparts. Such carbonate systems and associated carbonate grain assemblages in the tropics are rare in the present-day world. Nonetheless, it is crucial to gain a better understanding of those ecosystems, including their drivers and players because such settings potentially represent models for ancient depositional systems as well as for predicted future environmental conditions. One of the modern occurrences of eutrophic tropical carbonate systems is the northern Mauritanian Shelf. The marine environment is characterized by an eastern boundary upwelling system that pushes cool and nutrient-rich intermediate waters onto a wide epicontinental platform (Golfe d'Arguin) where the waters warm up to tropical temperatures. The resulting facies is mixed carbonate-siliciclastic with a dominant foramol association grading into bimol and barnamol grain assemblages in the shallowest areas forming the Banc d'Arguin. Besides this cool water-related heterozoan association, the carbonate sediment is characterized by tropical molluskan species, while chlorozoan biota (e.g., corals and algal symbiont-bearing foraminifers) are entirely absent. We here present a first comprehensive facies analysis of this model example of eutrophic tropical carbonates. Furthermore, we reconstruct the loci of carbonate production and provide a conclusive depositional model of the Banc d'Arguin that received little attention to date due to its poorly accessible nature.