928 resultados para Start Sites
Resumo:
A major objective of Leg 189 was to date the opening of the Australia-Antarctic Gateway to shallow-water circulation and subsequently to deepwater circulation in the Paleogene. Calcareous nannofossils are the most consistently present, although not necessarily the most abundant fossil group in Paleogene sections, and the shipboard study (Exon, Kennett, Malone, et al., 2001, doi:10.2973/odp.proc.ir.189.2001) showed that they generally provided the most useful age information. This report presents documentation of the stratigraphic distribution of nannofossils in the Paleogene and summarizes useful nannofossil datums, which should facilitate construction of age-depth curves and contribute to an integrated chronology for Leg 189 sediments. Previous Paleogene nannofossil study in this area is that of Edwards and Perch-Nielsen (1975, doi:10.2973/dsdp.proc.29.113.1975).
Resumo:
Carbon and oxygen isotopic compositions of authigenic carbonate nodules or layers reflect the diagenetic conditions at the time of nodule growth. The shallowest samples of carbonate nodules and dissolved inorganic carbon of pore water samples beneath the sulfate reduction zone (0-160 meters below seafloor [mbsf]) at Site 1165 have extremely negative d13C values (-50 per mil and -62 per mil, respectively). These negative d13C values indicate nodule formation in association with anaerobic methane oxidation coupled with sulfate reduction. The 34S of residual sulfate at Site 1165 shows only minor 34S enrichment (+6 per mil), even with complete sulfate reduction. This small degree of apparent 34S enrichment is due to extreme "open-system" sulfate reduction, with sulfate abundantly resupplied by diffusion from overlying seawater. Ten calcite nodules from Site 1165 contain minor quartz and feldspar and have d13C values ranging from -49.7 per mil to -8.2 per mil. The nodules with the most negative d13C values currently are at depths of 273 to 350 mbsf and must have precipitated from carbonate largely derived from subsurface anaerobic methane oxidation. The processes of sulfate reduction coupled with methane oxidation in sediments of Hole 1165B are indicated by characteristic concentration and isotopic (d34S and d13C) profiles of dissolved sulfate and bicarbonate. Three siderite nodules from Site 1166 contain feldspar and mica and one has significant carbonate-apatite. The siderite has d13C values ranging from -15.3 per mil to -7.6 per mil. These siderite nodules probably represent early diagenetic carbonate precipitation during microbial methanogenesis.
Resumo:
The results of experiments in 40Ar/39Ar age dating using fresh basement material from Sites 765 and 766 of Leg 123 of the Ocean Drilling Program are inconsistent and cannot be used to constrain the basement age of the Argo Abyssal Plain in the Indian Ocean. However, a celadonite sample, which was precipitated during a low-temperature alteration event that affected the basement at Site 765, yielded a K-Ar age of 155.3 ±3.4 Ma. Celadonites, which have been dated using Rb-Sr methods for basement in the Atlantic Ocean (Staudigel et al., 1981, doi:10.1016/0012-821X(81)90186-2) and by K-Ar methods for the Troodos Ophiolite (Staudigel et al., 1986, doi:10.1130/0091-7613(1986)14<72:AASAOC>2.0.CO;2), and for sediments from the Pacific Ocean (Peterson et al., 1986, doi:10.2973/dsdp.proc.92.132.1986) yield ages that are up to 15 Ma younger than the age for the formation of basement. Thus, the celadonite age is retained as a reliable minimum age for basement at Site 765. This radiometric age is inconsistent with biostratigraphic ages, which indicate a maximum of late Berriasian (approximately 140 Ma) for Site 765, but is consistent with geophysical interpretations of marine magnetic anomalies and with the early north-south seafloor spreading history of the Argo Abyssal Plain region of the Indian Ocean.
Resumo:
Paleomagnetic measurements were made on 913 samples from 11 holes (626B, 626C, 627B, 628A, 630A, 631A, 632A, 632B, 633A, 634A, and 635B) drilled in and around the Bahamas carbonate bank during Ocean Drilling Program Leg 101. These samples displayed a wide range of magnetic intensities (from about 1.0 A/m to 1.6 * 10**- 6 A/m) and magnetic behavior. Most samples were weakly magnetized and had low mean destructive fields; however, sediments from sections of several holes were strongly magnetic with stable magnetizations. Magnetic-polarity interpretations were made on a Campanian unit from Hole 627B, a mid-Oligocene unit from Hole 628A, and a Plio-Pleistocene section from Hole 633A. Sediments in the upper parts of Holes 627B, 632A, and 633A have high magnetic intensities that decay 2 to 3 orders of magnitude over depths of 5 to 18 mbsf. The pattern of decline of the magnetism and the change in mean destructive fields and geochemical conditions in these holes are consistent with diagenetic dissolution of the magnetic minerals in a suboxic or anoxic-sulfidic environment. Paleolatitudes were calculated from samples from 16 time units in 7 holes and compared to the apparent polar wander path of the North American plate.
Resumo:
In this data report we present results from stable isotope measurements (d13C and d18O) on bulk sediment at several sites located on a transect along a subduction margin offshore Costa Rica (Ocean Drilling Program Sites 1039, 1040, and 1253). Comparison of stable isotope compositions (d13C and d18O) of the pelagic carbonates Subunit U3C between the reference sites (Site 1039 and 1253) and the underthrust section (Site 1040) reveals similar d13C values and minor differences in d18O values within four specific intervals. Isotope stratigraphy was then used to further constrain the shipboard age models based on bio- and magnetostratigraphy. The resulting age models are in agreement with those derived from biostratigraphy and confirm that the sedimentation rate of the lower Subunit 3C is roughly constant on the order of 50 m/m.y. This is in contrast with the postulated very high sedimentation rates at ~12.7 Ma and lower sedimentation rates (~18 m/m.y.) in the lower part of the section between 16 and 13 Ma, as suggested by shipboard magnetostratigraphic datums.
Resumo:
We have determined (1) the abundance and isotopic composition of pyrite, monosulphide, elemental sulphur, organically bound sulphur, and dissolved sulphide; (2) the partition of ferric and ferrous iron; (3) the organic carbon contents of sediments recovered at two sites drilled on the Peru Margin during Leg 112 of the Ocean Drilling Program. Sediments at both sites are characterised by high levels of organically bound sulphur (OBS). OBS comprises up to 50% of total sedimentary sulphur and up to 1% of bulk sediment. The weight ratio of S to C in organic matter varies from 0.03 to 0.15 (mean = 0.10). Such ratios are like those measured in lithologically similar, but more deeply buried petroleum source rocks of the Monterey and Sisquoc formations in California. The sulphur content of organic matter is not limited by the availability of porewater sulphide. Isotopic data suggest that sulphur is incorporated into organic matter within a metre of the sediment surface, at least partly by reaction with polysulphides. Most inorganic Sulphur occurs as pyrite. Pyrite formation occurred within surface sediments and was limited by the availability of reactive iron. But despite highly reducing sulphidic conditions, only 35-65% of the total iron was converted to sulphide; 10-30% of the total iron still occurs as Fe(III). In surface sediments, the isotopic composition of pyrite is similar to that of both iron monosulphide and dissolved sulphide. Either pyrite, like monosulphide, formed by direct reaction between dissolved sulphide and detrital iron, and/or the sulphur species responsible for converting FeS to FeS2 is isotopically similar to dissolved sulphide. Likely stoichiometries for the reaction between ferric iron and excess sulphide imply a maximum resulting FeS2:FeS ratio of 1:1. Where pyrite dominates the pool of iron sulphides, at least some pyrite must have formed by reaction between monosulphide and elemental sulphur and/or polysulphide. Elemental sulphur (S°) is most abundant in surface sediments and probably formed by oxidation of sulphide diffusing across the sediment-water interface. In surface sediments, S° is isotopically heavier than dissolved sulphide, FeS and FeS2 and is unlikely to have been involved in the conversion of FeS to FeS2. Polysulphides are thus implicated as the link between FeS and FeS2.
Resumo:
During ODP Leg 123, Sites 765 and 766 were drilled to examine the tectonic evolution, sedimentary history, and paleoceanography of the Argo Abyssal Plain and lower Exmouth Plateau. At each site, the quality of magnetostratigraphic and biostratigraphic records varies because of complicating factors, such as the predominance of turbidites, the presence of condensed horizons, or deposition beneath the CCD. Based primarily on the presence of nannofossils, the base of the sedimentary section at Site 765 was dated as Tithonian. A complete Cretaceous sequence was recovered at this site, although the sedimentation rate varies markedly through the section. The Cretaceous/Tertiary boundary is represented by a condensed horizon. The condensed Cenozoic sequence at Site 765 extends from the upper Paleocene to the lower Miocene. A dramatic increase in sedimentation rate was observed in the lower Miocene, and a 480-m-thick Neogene section is present. The Neogene section is continuous, except for a minor hiatus in the lower Pliocene. The base of the sedimentary section at Site 766 is Valanginian, in agreement with the site's position on marine magnetic anomaly Mil. Valanginian to Barremian sediments are terrigenous, with variable preservation of microfossils, and younger sediments are pelagic, with abundant well-preserved microfossils. Sedimentation rate is highest in the Lower Cretaceous and decreases continually upsection. Upper Cenozoic sediments are condensed, with several hiatuses.
Resumo:
Serpentinite clasts and muds erupted from Conical Seamount, Mariana forearc, show substantial enrichment in boron (B) and 11B (delta11B up to +15?) relative to mantle values. These elevated B isotope signatures result from chemical exchange with B-rich pore fluids that are upwelling through the seamount. If the trends of decreasing delta11B with slab depth shown by cross-arc magmatic suites in the Izu and Kurile arcs of the western Pacific are extended to shallow depths (~25 km), they intersect the inferred delta11B of the slab-derived fluids (+13x) at Conical Seamount. Simple mixtures of a B-rich fluid with a high delta11B and B-poor mantle with a low delta11B are insufficient to explain the combined forearc and arc data sets. The B isotope systematics of subduction-related rocks thus indicate that the fluids evolved from downgoing slabs are more enriched in 11B than the slab materials from which they originate. Progressively lower delta11B in arc lavas erupted above deep slabs reflects both the progressive depletion of 11B from the slab and progressively greater inputs of mantle-derived B. This suggests that the slab releases 11B-enriched fluids from the shallowest levels to depths greater than 200 km.
Resumo:
Sites 677 and 678 were drilled on ODP Leg 111 to test hypotheses about the nature and pattern of hydrothermal circulation on a mid-ocean ridge flank. Together with earlier results from DSDP Site 501/504 and several heatflow and piston coring surveys covering a 100-km**2 area surrounding the three drill sites, they confirm that hydrothermal circulation persists in this 5.9-m.y.-old crust, both in basement and through the overlying sediments (Langseth et al., 1988, doi:10.2973/odp.proc.ir.111.102.1988). Profiles of sediment pore-water composition with depth at the three drill sites show both vertical and horizontal gradients. The shapes of the profiles and their variation from one site to another result from a combination of vertical and horizontal diffusion, convection, and reaction in the sediments and basement. Chemical species that are highly reactive in the siliceous-calcareous biogenic sediments include bicarbonate (alkalinity), ammonium, sulfate, manganese, calcium, strontium, lithium, silica, and possibly potassium. Reactions include bacterial sulfate reduction, mobilization of Mn2+, precipitation of CaCO3, and recrystallization of calcareous and siliceous oozes to chalk, limestone, and chert. Species with profiles more affected by reaction in basaltic basement than in the sediments include Mg, Ca, Na, K, and oxygen isotopes. Reaction in basement at 60?C and at higher temperatures has produced a highly altered basement formation water that is uniform in composition over distances of several kilometers. As inferred from the composition of the basal sediment pore water at the three sites, this uniformity extends from up flow zone to downflow zone in basement and the sediments. It exists in spite of large variations in heat flow and depth to basement, apparently as a result of homogenization by hydrothermal circulation in basement. Profiles for chlorinity, Na, Mg, and other species in the sediment pore waters confirm that Site 678, drilled on a localized heatflow high identified by Langseth et al. (1988), is a site of long-lived upwelling of warm water from basement through the sediments at velocities of 1 to 2 mm/yr. The upflow through the anomalously thin sediments is apparently localized above an uplifted fault block in basement. This site and other similar sites in the survey area give rise to lateral diffusion and possibly flow through the sediments, which produces lateral gradients in sediment pore-water composition at sites such as 501/504. The complementary pore-water profiles at the low-heatflow Site 677 2 km to the south indicate that downflow is occurring through the sediments there, at comparable rates of 1 to 2 mm/yr.
Resumo:
In this manuscript, we present the results of a physical properties investigation carried out on basaltic cores recovered from the four Leg 192 basement sites, focusing on the relationship between physical properties and alteration in basalts. Variations in physical properties in the Leg 192 basement sites closely resemble each other and reflect the amount of alteration and vein formation in the basement basalts. P-wave velocities, magnetic susceptibilities, and densities for the dense massive basalts are higher than those of more altered and heavily veined basalts. Porosity-dependent alteration is observed at Leg 192 basement sites: P-wave velocity displays a general decrease with increasing loss on ignition and potassium content. These trends are consistent with trends documented for typical alteration of oceanic crust and suggest that basalt alteration is largely responsible for the variation of the physical properties exhibited by rocks at Leg 192 basement sites. Our physical property data support the conclusion that only low-temperature seawater-mediated alteration occurred in the lava flows of the Ontong Java Plateau (OJP). This lack of higher-temperature hydrothermal alteration is consistent with the idea that the OJP basement sites are far from their eruptive vents.
Resumo:
We report analyses of porosity and permeability of core samples from Site 1193 in the Northern Marion Platform, Sites 1196 and 1199 in the Southern Marion Platform, and Sites 1194, 1195, 1197, and 1198 from the slopes of these platforms. The samples include 415 horizontal 1-in plugs, 290 vertical 1-in plugs, and 23 whole-core pieces. Porosity and permeability analyses were possible for most, but not all, samples. Grain density measurements were also obtained for the horizontal plugs. Representative photomicrographs are provided of thin sections from 139 of the horizontal plugs and the 23 whole-core pieces.
Resumo:
Leg 92 of the Deep Sea Drilling Project cored sediments containing calcareous microfossils at six sites along 19°S latitude in the South Pacific Ocean. Shipboard examination of these sediments revealed planktonic foraminifers of uppermost Oligocene through Pleistocene age that were identified and assigned to biostratigraphic zones according to the tropical zonation scheme of Blow (1969). Preservation of planktonic foraminifers in the sites from Leg 92 has been affected by the position of each site with respect to the lysocline and calcium carbonate compensation depth (CCD) at the time of deposition, depth of burial, and sediment accumulation rate (rate of burial). An additional factor may also be important, especially in the sediments deposited immediately above basement. Evidence of poor preservation in basal sediments of Holes 600C and 601, which have always been shallower than both the lysocline and the CCD, suggests that hydrothermal solutions circulating within young oceanic crust may penetrate the overlying sediments and affect the preservation of calcareous microfossils deposited there.
Resumo:
Three ice type regimes at Ice Station Belgica (ISB), during the 2007 International Polar Year SIMBA (Sea Ice Mass Balance in Antarctica) expedition, were characterized and assessed for elevation, snow depth, ice freeboard and thickness. Analyses of the probability distribution functions showed great potential for satellite-based altimetry for estimating ice thickness. In question is the required altimeter sampling density for reasonably accurate estimation of snow surface elevation given inherent spatial averaging. This study assesses an effort to determine the number of laser altimeter 'hits' of the ISB floe, as a representative Antarctic floe of mixed first- and multi-year ice types, for the purpose of statistically recreating the in situ-determined ice-thickness and snow depth distribution based on the fractional coverage of each ice type. Estimates of the fractional coverage and spatial distribution of the ice types, referred to as ice 'towns', for the 5 km**2 floe were assessed by in situ mapping and photo-visual documentation. Simulated ICESat altimeter tracks, with spot size ~70 m and spacing ~170 m, sampled the floe's towns, generating a buoyancy-derived ice thickness distribution. 115 altimeter hits were required to statistically recreate the regional thickness mean and distribution for a three-town assemblage of mixed first- and multi-year ice, and 85 hits for a two-town assemblage of first-year ice only: equivalent to 19.5 and 14.5 km respectively of continuous altimeter track over a floe region of similar structure. Results have significant implications toward model development of sea-ice sampling performance of the ICESat laser altimeter record as well as maximizing sampling characteristics of satellite/airborne laser and radar altimetry missions for sea-ice thickness.
Resumo:
This contribution summarizes the biostratigraphy of planktonic foraminifers, calcareous nannofossils, and benthic foraminifers, in combination with the magnetostratigraphy, carbon and oxygen isotope stratigraphy of benthic foraminifers, and CaCO3 stratigraphy for the Maestrichtian through Paleogene calcareous sequences recovered at Sites 689 and 690 on Maud Rise (at about 65°S, eastern Weddell Sea, Antarctica). These data represent the southernmost calciumcarbonate record available for that interval, and thus extend the biostratigraphic and isotopic database to higher latitudes. Sites 689 and 690 form the southernmost anchor of a north-south transect through the Atlantic Ocean for Paleogene biostratigraphy and chemostratigraphy.
Resumo:
The carbon and oxygen isotopic compositions of selected bryozoan skeletons from upper Pleistocene bryozoan mounds in the Great Australian Bight (Ocean Drilling Program Leg 182; Holes 1129C, 1131A, and 1132B) were determined. Cyclostome bryozoans, Idmidronea spp. and Nevianipora sp., have low to intermediate magnesian calcite skeletons (1.5-10.0 and 0.9-6.4 molar percentage [mol%] MgCO3, respectively), but a considerable number include marine cements. The cheilostome Adeonellopsis spp. are biminerallic, principally aragonite, with some high magnesian calcite (HMC) (6.6-12.1 mol% MgCO3). The HMC fraction of Adeonellopsis has lower d13C and similar d18O values compared with the aragonite fraction. Reexamination of modern bryozoan isotopic composition shows that skeletons of Adeonellopsis spp. and Nevianipora sp. form close to oxygen isotopic equilibrium with their ambient water. Therefore, changes in glacial-interglacial oceanographic conditions are preserved in the oxygen isotopic profiles. The bryozoan oxygen isotopic profiles are correlated well with marine isotope Stages 1-8 in Holes 1129C and 1132B and to Stages 1-4(?) in Hole 1131A. The horizons of the bryozoan mounds that yield skeletons with heavier oxygen isotopic values can be correlated with isotope Stages 2, 4(?), 6, and 8 in Hole 1129C; Stages 2 and 4(?) in Hole 1131A; and Stages 2, 4, 6, and 8 in Hole 1132B. These results provide supporting evidence for a model for bryozoan mound formation, in which the mounds were formed during intensified upwelling and increased trophic resources during glacial periods.