381 resultados para core plant role


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thirty-nine medium and fine grained sandstones from between 19,26 and 147,23 mbsf in the Cape Roberts-l core (CRP-1) were analysed for 10 major and 16 trace elements. Using whole-lock compositions, 9 samples were selected for analyses of mineral and glass grains by energy dispersive electron microscope. Laser-Ablation Mass-Spectrometry was used to determine rare earth elements and 14 additional trace elements in glass shards, pyroxenes and feldspars in order to examine their contribution to the bulk rock chemistry. Geochemical data reveal the major contribution played by the Granite Harbour Intrusives to the whole rock composition, even if a significant input is supplied by McMurdo volcanics and Ferrar dolerite pyroxenes McMurdo volcanics were studied in detail; they appeal to derive from a variety of litologies, and a dominant role of wind transpoitation from exposures of volcanic rocks may be inferred from the contemporary occurrence of different compositions at all depths. Only at 116.55 mbsf was a thin layer of tephra found, linked to an explosive eruption McMurdo volcanic rocks exhibit larger abundances at depths above 62 mbsf, in correspondence with the onset of volcanic activity in the McMurdo Sound area. From 62 mbsf to the bottom of the core, McMurdo volcanics are less abundant and probably issued from some centres in the McMurdo Sound region. However, available data do not allow the exclusion of wind transport from some eruptive centres active in north Victoria Land at the beginning of the Miocene Epoch.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global and local climatic forcing, e.g. concentration of atmospheric CO2 or insolation, influence the distribution of C3 and C4 plants in southwest Africa. C4 plants dominate in more arid and warmer areas and are favoured by lower pCO2 levels. Several studies have assessed past and present continental vegetation by the analysis of terrestrial n-alkanes in near-coastal deep sea sediments using single samples or a small number of samples from a given climatic stage. The objectives of this study were to evaluate vegetation changes in southwest Africa with regard to climatic changes during the Late Pleistocene and the Holocene and to elucidate the potential of single sample simplifications. We analysed two sediment cores at high resolution, altogether ca. 240 samples, from the Southeast Atlantic Ocean (20°S and 12°S) covering the time spans of 18 to 1 ka and 56 to 2 ka, respectively. Our results for 20°S showed marginally decreasing C4 plant domination (of ca. 5%) during deglaciation based on average chain length (ACL27-33 values) and carbon isotopic composition of the C31 and C33 n-alkanes. Values for single samples from 18 ka and the Holocene overlap and, thus, are not significantly representative of the climatic stages they derive from. In contrast, at 12°S the n-alkane parameters show a clear difference of plant type for the Late Pleistocene (C4 plant domination, 66% C4 on average) and the Holocene (C3 plant domination, 40% C4 on average). During deglaciation vegetation change highly correlates with the increase in pCO2 (r² = 0.91). Short-term climatic events such as Heinrich Stadials or Antarctic warming periods are not reflected by vegetation changes in the catchment area. Instead, smaller vegetation fluctuations during the Late Pleistocene occur in accordance with local variations of insolation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subarctic North Pacific Ocean holds a large CO2 reservoir that is currently isolated from the atmosphere by a low-salinity layer. It has recently been hypothesized that the reorganization of these high-CO2 waters may have played a crucial role in the degassing of carbon dioxide to the atmosphere during the last deglaciation. This reorganization would leave some imprint on paleo-productivity records. Here we present 230Th-normalized biogenic fluxes from an intermediate depth sediment core in the Northwest Pacific (RC10-196, 54.7°N, 177.1°E, 1007 m) and place them within the context of a synthesis of previously-published biogenic flux data from 49 deep-sea cores north of 20°N, ranging from 420 to 3968 m water depth. The 230Th-normalized opal, carbonate, and organic carbon fluxes from RC10-196 peak approximately 13,000 calendar years BP during the Bølling/Allerød (B/A) period. Our data synthesis suggests that biogenic fluxes were in general lowest during the last glacial period, increased somewhat in the Northwest Pacific during Heinrich Event 1, and reached a maximum across the entire North Pacific during the B/A period. We evaluate several mechanisms as possible drivers of deglacial change in biogenic fluxes in the North Pacific, including changes in preservation, sediment focusing, sea ice extent, iron inputs, stratification, and circulation shifts initiated in the North Atlantic and North Pacific. Our analysis suggests that while micronutrient sources likely contributed to some of the observed changes, the heterogeneity in timing of glaciogenic retreat and sea level make these mechanisms unlikely causes of region-wide contemporaneous peaks in export production. We argue that paleo-observations are most consistent with ventilation increases in both the North Pacific (during H1) and North Atlantic (during B/A) being the primary drivers of increases in biogenic flux during the deglaciation, as respectively they were likely to bring nutrients to the surface via increased vertical mixing and shoaling of the global thermocline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The causes of past changes in the global methane cycle and especially the role of marine methane hydrate (clathrate) destabilization events are a matter of debate. Here we present evidence from the North Greenland Ice Core Project ice core based on the hydrogen isotopic composition of methane [dD(CH4)] that clathrates did not cause atmospheric methane concentration to rise at the onset of Dansgaard-Oeschger (DO) events 7 and 8. Box modeling supports boreal wetland emissions as the most likely explanation for the interstadial increase. Moreover, our data show that dD(CH4) dropped 500 years before the onset of DO 8, with CH4 concentration rising only slightly. This can be explained by an early climate response of boreal wetlands, which carry the strongly depleted isotopic signature of high-latitude precipitation at that time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Toba volcanic event, one of the largest eruptions during the Quaternary, is documented in marine sediment cores from the northeastern Arabian Sea. On the crest of the Murray Ridge and along the western Indian continental margin, we detected distinct concentration spikes and ash layers of rhyolithic volcanic shards near the marine isotope stage 5-4 boundary with the chemical composition of the "Youngest Toba Tuff". Time series of the Uk'37-alkenone index, planktic foraminiferal species, magnetic susceptibility, and sediment accumulation rates from this interval show that the Toba event occurred between two warm periods lasting a few millennia. Using Toba as an instantaneous stratigraphic marker for correlation between the marine- and ice-core chronostratigraphies, these two Arabian Sea climatic events correspond to Greenland interstadials 20 and 19, respectively. Our data sets thus depict substantial interstadial/stadial fluctuations in sea-surface temperature and surface-water productivity. We show that variable terrigenous (eolian) sediment supply played a crucial role in transferring and preserving the productivity signal in the sediment record. Within the provided stratigraphic resolution of several decades to centennials, none of these proxies shows a particular impact of the Toba eruption. However, our results are additional support that Toba, despite its exceptional magnitude, had only a minor impact on the evolution of low-latitude monsoonal climate on centennial to millennial time scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a paleoceanographic reconstruction of the southwestern South Atlantic for the past 13 kyr based on faunal and isotopic analysis of planktonic foraminifera from a high-resolution core retrieved at the South Brazil Bight continental slope. Our record indicates that oceanographic changes in the southwestern South Atlantic during the onset of the Holocene were comparable in strength to those that occurred during the Younger Dryas. Full interglacial conditions started abruptly after 8.2 kyr BP with a sharp change in faunal composition and surface hydrography (SST and SSS). Part of the observed events may be explained in terms of changes in thermohaline circulation while the other part suggests a dominant role of winds. Our data indicate that during the Early Holocene upwelling was significantly strengthened in the South Brazil Bight promoting high productivity and preventing the establishment of the typically interglacial menardiiform species. In general terms, oceanographic changes recorded by core KF02 occurred in synchrony with Antarctica's climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Indo-Pacific Warm Pool (IPWP) is a key site for the global hydrologic cycle, and modern observations indicate that both the Indian Ocean Zonal Mode (IOZM) and the El Niño Southern Oscillation exert strong influence on its regional hydrologic characteristics. Detailed insight into the natural range of IPWP dynamics and underlying climate mechanisms is, however, limited by the spatial and temporal coverage of climate data. In particular, long-term (multimillennial) precipitation patterns of the western IPWP, a key location for IOZM dynamics, are poorly understood. To help rectify this, we have reconstructed rainfall changes over Northwest Sumatra (western IPWP, Indian Ocean) throughout the past 24,000 y based on the stable hydrogen and carbon isotopic compositions (dD and d13C, respectively) of terrestrial plant waxes. As a general feature of western IPWP hydrology, our data suggest similar rainfall amounts during the Last Glacial Maximum and the Holocene, contradicting previous claims that precipitation increased across the IPWP in response to deglacial changes in sea level and/or the position of the Intertropical Convergence Zone. We attribute this discrepancy to regional differences in topography and different responses to glacioeustatically forced changes in coastline position within the continental IPWP. During the Holocene, our data indicate considerable variations in rainfall amount. Comparison of our isotope time series to paleoclimate records from the Indian Ocean realm reveals previously unrecognized fluctuations of the Indian Ocean precipitation dipole during the Holocene, indicating that oscillations of the IOZM mean state have been a constituent of western IPWP rainfall over the past ten thousand years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This data set contains three time series of measurements of soil carbon (particular and dissolved) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Particulate soil carbon: Stratified soil sampling was performed every two years since before sowing in April 2002 and was repeated in April 2004, 2006 and 2008 to a depth of 30 cm segmented to a depth resolution of 5 cm giving six depth subsamples per core. Total carbon concentration was analyzed on ball-milled subsamples by an elemental analyzer at 1150°C. Inorganic carbon concentration was measured by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon. 2. Particulate soil carbon (high intensity sampling): In one block of the Jena Experiment soil samples were taken to a depth of 1 m (segmented to a depth resolution of 5 cm giving 20 depth subsamples per core) with three replicates per block ever 5 years starting before sowing in April 2002. Samples were processed as for the more frequent sampling. 3. Dissolved organic carbon: Suction plates installed on the field site in 10, 20, 30 and 60 cm depth were used to sample soil pore water. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer. Annual mean values of DOC are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A depression filled with Late Glacial and Holocene sediments was excavated during the geological exploration and recovery of a dump area near Tessin close to Rostock, and initiated the studies of the present paper. Pebble analysis of three exposed or respectively drilled till horizons as well as pollenanalytical, carpological and faunistical studies carried out allow the stratigraphical subdivision of the Quaternary sequence of the dump area. The basal till was probably the result of dead ice decay, and was lithostratigraphically assigned to the Pomerian Stage (qw2). The palynological results of boreholes RKS 19/93 and A/92 reveal pre-Allerod and other sediments instead of the expected interweichselian deposits. Based on the palynological and carpological findings, we correlated the beginning of the late glacial development in the locality with the end of the Meiendorf-lnterstadial sensu Menke in Bock et al. (1985, doi:10.3285/eg.35.1.18). The limnic-telmatic sedimentation could be observed pollen floristically probably starting with the Meiendorf-lnterstadial (Hippophae-Betula nana-phase) followed by the Bolling-(Betula nana-B. alba s.l.-Artemisia-Helianthemum-Poaceae-phase) and the Allerad-lnterstadial [Betula alba s.l.-(Pinus)-Cyperaceae-phase] lasting up to the Younger Dryas (Juniperus-Artemisia-Poaceae-phase). Sedimentation closed during the Younger Dryas with the accumulation of fine sands. It was reactivated later during the Holocene due to the anthropogene influence (Older and Younger Subatlantic, dampness of the depression by clearing).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This data set contains measurements of plant height: vegetative height (non-flowering indviduals) and regenerative height (flowering individuals) in 2002 from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2002, plant height was recorded twice a year: in late June and just before biomass harvest during peak standing biomass in late August. For 3 target plant individuals (if present) per sown species from the central area of the plots, vegetative height (non-flowering indviduals) and regenerative height (flowering individuals) were measured as stretched height. Provided are the indivdiual measurements and the mean over the measured plants per plot (in June) and the mean over the measured plants per plot (in August).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a hydrologic reconstruction of the Sahara-Sahel transition, covering the complete last glacial cycle (130 ka), based on a combination of plant-wax-specific hydrogen (dD) and carbon isotopes (d13C). The dD and d13C signatures of long-chain n-alkanes from ODP Site 659 off NW Africa reveal a significant anti-correlation. Complementary to published pollen data, we infer that this plant-wax signal reflects sensitive responses of the vegetation cover to precipitation changes in the Sahel region, as well as varying contributions from biomes north of the Sahara (C3 domain) by North-East Trade Winds (NETW). During arid phases, especially the northern parts of the Sahel likely experienced crucial water stress, which resulted in a pronounced contraction of the vegetation cover, thus reducing the amount of C4 plant waxes from the region. The increase in NETW strength during dry periods further promoted a more pronounced C3-plant-wax signal derived from the North African C3 plant domain. During humid periods, the C4-dominated Sahelian environments spread northward into the Saharan realm, in association with lower NETW inputs of C3 plant waxes. Arid-humid cycles deduced from plant-wax dD are in accordance with concomitant changes in weathering intensity reflected in varying major element distributions. Environmental shifts are generally linked to periods with large fluctuations in Northern Hemisphere summer insolation. During Marine Isotope Stages 2 and 3, when insolation variability was low, coupling of the hydrologic regime to alkenone-based estimates of NE Atlantic sea-surface temperatures becomes apparent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediments from Holes 994C, 995A, 997A, and 997B have been investigated for "combined" gases (adsorbed gas and that portion of free gas that has not escaped from the pore volume during core recovery and sample collection and storage), solvent-extractable organic compounds, and microscopically identifiable organic matter. The soluble materials mainly consist of polar compounds. The saturated hydrocarbons are dominated by n-alkanes with a pronounced odd-even predominance pattern that is derived from higher plant remains. Unsaturated triterpenoids and 17ß, 21ß-pentacyclic triterpenoids are characteristic for a low maturity stage of the organic matter. The low maturity is confirmed by vitrinite reflectance values of 0.3%. The proportion of terrestrial remains (vitrinite) increases with sub-bottom depth. Within the liptinite fraction, marine algae plays a major role in the sections below 180 mbsf, whereas above this depth sporinites and pollen from conifers are dominant. These facies changes are confirmed by the downhole variations of isoprenoid and triterpenoid ratios in the soluble organic matter. The combined gases contain methane, ethane, and propane, which is a mixture of microbial methane and thermal hydrocarbon gases. The variations in the gas ratios C1/(C2+C3) reflect the depth range of the hydrate stability zone. The carbon isotopic contents of ethane and propane indicate an origin from marine organic matter that is in the maturity stage of the oil window.