834 resultados para Populus cathayana Rehd.
Resumo:
Two marshes near Muscotah and Arrington, Atchison County, northeastern Kansas, yielded a pollen sequence covering the last 25,000 yrs of vegetation development. The earliest pollen spectra are comparable with surface pollen spectra from southern Saskatchewan and southeastern Manitoba and might indicate a rather open vegetation but with some pine, spruce, and birch as the most important tree species, with local stands of alder and willow. This type of vegetation changed about 23,000 yrs ago to a spruce forest, which prevailed in the region until at least 15,000 yrs ago. Because of a hiatus, the vegetation changes resulting in the spread of a mixed deciduous forest and prairie, which was present in the region from 11,000 to 9,000 yrs ago, remain unknown. Prairie vegetation, with perhaps a few trees along the valleys, covered the region until about 5,000 yrs ago, when a re-expansion of deciduous trees began in the lowlands.
Resumo:
Results of pedogeomorphological, geochronological and paleobotanical investigations are presented covering the last ca. 4,000 years. The study sites are located in the heavily degraded Kyichu River catchment around Lhasa at 3,600-4,600 m a.s.l. Repeatedly, colluvial sediments have been recorded overlying paleosols. These deposits can be divided into i) coarse-grained sediments with a high proportion of stones and boulders originating from alluvial fans and debris flows, ii) matrix supported sediments with some stones and boulders originating from mudflows or combined colluvial processes such as hillwash plus rock fall, and iii) fine-grained sediments originating from hill wash. The IRSL multi-level dating of profile QUG 1 points to a short-time colluvial sedimentation between 1.0 ± 0.1 and 0.8 ± 0.1 ka. In contrast, dated paleosols of profile GAR 1 (7,908 ± 99 and 3,668 ± 57 BP) encompass a first colluvial episode. Here, the upper colluvial sedimentation took place during several periods between 2.6 ± 0.3 and 0.4 ± 0.1 ka. For the first time in Tibet, a systematic extraction, determination and dating of charcoals from buried paleosols was conducted. The charcoals confirm the Late Holocene presence of juniper forests or woodlands in a now treeless, barren environment. A pollen diagram from Lhasa shows a distinct decline of pollen of the Jumperus-type around 4,140 ± 50 BP, which is interpreted as indicating a clearing of forests on the adjacent slopes. It is assumed that the environmental changes from forests to desertic rangelands since ca. 4,000 BP have been at least reinforced by humans.
Resumo:
Beringian climate and environmental history are poorly characterized at its easternmost edge. Lake sediments from the northern Yukon Territory have recorded sedimentation, vegetation, summer temperature and precipitation changes since ~16 cal ka BP. Herb-dominated tundra persisted until ~14.7 cal ka BP with mean July air temperatures less than or equal to 5 °C colder and annual precipitation 50 to 120 mm lower than today. Temperatures rapidly increased during the Bølling/Allerød interstadial towards modern conditions, favoring establishment of Betula-Salix shrub tundra. Pollen-inferred temperature reconstructions recorded a pronounced Younger Dryas stadial in east Beringia with a temperature drop of ~1.5 °C (~2.5 to 3.0 °C below modern conditions) and low net precipitation (90 to 170 mm) but show little evidence of an early Holocene thermal maximum in the pollen record. Sustained low net precipitation and increased evaporation during early Holocene warming suggest a moisture-limited spread of vegetation and an obscured summer temperature maximum. Northern Yukon Holocene moisture availability increased in response to a retreating Laurentide Ice Sheet, postglacial sea level rise, and decreasing summer insolation that in turn led to establishment of Alnus-Betula shrub tundra from ~5 cal ka BP until present, and conversion of a continental climate into a coastal-maritime climate near the Beaufort Sea.
Resumo:
1) Ingesamt 11 Profile aus sechs Mooren und Seen im Gebiet des Hannoverschen Wendlandes wurden pollenanalytisch untersucht. Die Ablagerungen umfassen den Zeitraum vom Beginn der Älteren Tundrenzeit bis zur Gegenwart. 2) Die Waldgeschichte des Hannoverschen Wendlandes weist teils Merkmale der atlantisch geprägten Gebiete Nordwestdeutschlands, teils solche des kontinental beeinflußten nordostdeutschen Raumes auf und nimmt damit eine Zwischenstellung ein. 3) Die Kiefer wandert zu Beginn der Allerödzeit ein, d.h. später als im mecklenburgisch-märkischen Gebiet und im mitteldeutschen Trockengebiet. Im Verlauf der Allerödzeit bildeten sich hier wie dort lichte Kiefern-Birken-Wälder aus. 4) In der Jüngeren Tundrenzeit fand zunächst nur eine geringe Auflichtung der Wälder statt, und die Kiefer überwog weiterhin. Erst im späteren Verlauf dieser stadialen Phase breitete sich die Birke aus und verdrängte die Kiefer. Der späte Rückgang der Kiefer stellt eine Parallele zu der Entwicklung in Südostmecklenburg und in der Altmark dar. Die Abgrenzung dieser Phasen in der Jüngeren Tundrenzeit ist durch eine 14C-Datierung gesichert. 5) Noch im Atlantikum ähneln die Diagramme aus dem Gartower Talsandgebiet im Osten des Wendlandes in ihren hohen Kiefernanteilen denen der Sandergebiete in Brandenburg. Die Diagramme aus dem Moränengebiet des westlichen Wendlandes schließen dagegen mehr an die der östlichen Lüneburger Heide und des Hamburger Gebietes an. Dieser Unterschied wird auf edaphische Unterschiede zurückgeführt. 6) Seit dem frühen Subboreal glich auch die Vegetation des Gartower Gebietes mehr den buchenarmen Waldgesellschaften auf sauren Sandböden, wie sie im atlantischen Westen vorkommen. Die Kiefern sind fast ganz aus dem Waldbild verschwunden, wobei der rasche Rückgang zu Beginn des Subboreals sicher zu einem wesentlichen Teil vom Menschen beeinflusst worden ist. Die anschließende kiefernarme Zeit dauerte im gesamten Wendland bis zum Beginn der Kieferaufforstungen in der Neuzeit. 7) In allen untersuchten Diagrammen ist etwa seit dem Subboreal eine Besiedlung nachzuweisen. Diese muß im Osten des Wendlandes intensiver gewesen sein als im Westen. Es lassen sich Phasen geringer und intensiver Besiedlung nachweisen. 8) Seit Beginn des Subboreals ist das Waldbild schon so stark vom Menschen beeinflusst, dass die Ausbreitungsgeschichte der Laubwaldarten nicht ohne Berücksichtigung der Siedlungsphasen diskutiert werden kann. Besonders im Westen bestand eine ausgedehnte Lindenphase, die durch eine Siedlungszeit (Bronzezeit) beendet wurde. Beim folgenden Rückgang der Siedlungsintensität breitet sich bevorzugt die Hainbuche aus, die dann bei der nächsten Besiedlungsphase (Eisenzeit) zurückging. Erst danach erfolgte die maximale Rotbuchenausbreitung, die nur im Westteil des Wendlandes bedeutende Ausmaße zeigte, während im Ostteil rot- und hainbuchenreiche Eichenwälder entstanden. 9) Seit Beginn der mittelalterlichen Besiedlung ist dann der Eingriff des Menschen so stark gewesen, dass die edaphisch bedingten Unterschiede zwischen Moränen- und Sandergebieten im Pollenspektrum verwischt wurden. Sowohl die buchenreichen Wälder des westlichen als auch die buchenarmen Wälder des mittleren und des östlichen Teilgebietes müssen zu fast reinen Eichenwäldern geworden sein. 10) Calluna-Heiden sind im östlichen Wendland schon in vorgeschichtlicher Zeit nachzuweisen. Im Mittelalter und in der Neuzeit treten sie im gesamten Wendland auf. Etwa im 18. und 19. Jahrhundert war die Ausdehnung der Heideflächen am größten. Erst danach wurden sie im Zuge der Kiefernaufforstungen bis auf geringe Reste verdrängt. 11) Während in der spätglazialen Vegetation Juniperus auftritt, ist der Wacholder sowohl in vorgeschichtlicher als auch in geschichtlicher Zeit - im Gegensatz zur Lüneburger Heide - wohl niemals ein Bestandteil der anthropogenen Calluna-Heiden gewesen.
Resumo:
Palynological investigation of a 410 cm long core section from Tso Kar (33°10'N, 78°E, 4527 m a.s.l.), an alpine lake situated in the arid Ladakh area of NW India at the limit of the present-day Indian summer monsoon, was performed in order to reconstruct post-glacial regional vegetation and climate dynamics. The area was covered with alpine desert vegetation from ca. 15.2 to 14 kyr BP (1 kyr=1000 cal. years), reflecting dry and cold conditions. High influx values of long-distance transported Pinus sylvestris type pollen suggest prevailing air flow from the west and northwest. The spread of alpine meadow communities and local aquatic vegetation is a weak sign of climate amelioration after ca. 14 kyr BP. Pollen data (e.g. influx values of Pinus roxburghii type and Quercus) suggest that this was due to a strengthening of the summer monsoon and the reduced activity of westerly winds. The further spread of Artemisia and species-rich meadows occurred in response to improved moisture conditions between ca. 12.9 and 12.5 kyr BP. The subsequent change towards drier desert-steppe vegetation likely indicates more frequent westerly disturbances and associated snowfalls, which favoured the persistence of alpine meadows on edaphically moist sites. The spread of Chenopodiaceae-dominated vegetation associated with an extremely weak monsoon occurred at ca. 12.2-11.8 kyr BP during the Younger Dryas interstadial. A major increase in humidity is inferred from the development of Artemisia-dominated steppe and wet alpine meadows with Gentianaceae after the late glacial/early Holocene transition in response to the strengthening of the summer monsoon. Monsoonal influence reached maximum activity in the Tso Kar region between ca. 10.9 and 9.2 kyr BP. The subsequent development of the alpine meadow, steppe and desert-steppe vegetation points to a moderate reduction in the moisture supply, which can be linked to the weaker summer monsoon and the accompanying enhancement of the winter westerly flow from ca. 9.2 to 4.8 kyr BP. The highest water levels of Tso Kar around 8 kyr BP probably reflect combined effect of both monsoonal and westerly influence in the region. An abrupt shift towards aridity in the Tso Kar region occurred after ca. 4.8 kyr BP, as evidenced by an expansion of Chenopodiaceae-dominated desert-steppe. Low pollen influx values registered ca. 2.8-1.3 kyr BP suggest scarce vegetation cover and unfavourable growing conditions likely associated with a further weakening of the Indian Monsoon.
Resumo:
The article shows that pollen analysis plays an important role in the prediction of potential settlement areas and, furthermore, can offer a crude determination of settlement duration. Especially when the archaeological data fails to offer a possibility of dating, pollen analysis in connection with 14C can importantly broaden the knowledge base. As in the present case, the results of the Archaeo-Prognosis mapping and the pollen analysis of the Gabelsee are compared and, within this vicinity, confirmend. = Der Beitrag zeigt, dass die Pollenanalyse eine wichtige Rolle für die Vorhersage von potenziellen Siedlungsflächen spielen und darüber hinaus eine grobe Berechnung der Siedlungsdauer bieten kann. Insbesondere wenn die archäologische Datenbasis keine genaue Datierung zulässt, ermöglicht die Pollenanalyse in Verbindung mit der 14C-Datierung eine wichtige Erweiterung der Kenntnisse. Im vorliegenden Fall konnten die Ergebnisse der Archäoprognosekarte mit denjenigen der Pollenanalyse des Gabelsees verglichen und für diesen lokalen Raum bestätigt werden.
Resumo:
Lake Blankensee is filled with 14 m of late- and postglacial deposits, Lake Siethener See with 22,5 m. The lacustrine sedimentation begins in Lake Siethener See in the middle of the Alleröd with annual lamination which partly continues in the Younger Dryas. A 2 cm thick layer of the Laacher See tephra was found in both lakes, the Saksunarvatn tephra only in Lake Siethener See where the cool Rammelbeek-phase (Preboreal) could be shown. The youngest part of the sediment profiles is suspended drifting mud. Masses of Pediastrum (algae) indicate an increasing shoaling of Lake Blankensee after the Subboreal.
Resumo:
We present a detailed palaeoclimate analysis of the Middle Miocene (uppermost Badenian-lowermost Sarmatian) Schrotzburg locality in S Germany, based on the fossil macro- and micro-flora, using four different methods for the estimation of palaeoclimate parameters: the coexistence approach (CA), leaf margin analysis (LMA), the Climate-Leaf Analysis Multivariate Program (CLAMP), as well as a recently developed multivariate leaf physiognomic approach based on an European calibration dataset (ELPA). Considering results of all methods used, the following palaeoclimate estimates seem to be most likely: mean annual temperature ~15-16°C (MAT), coldest month mean temperature ~7°C (CMMT), warmest month mean temperature between 25 and 26°C, and mean annual precipiation ~1,300 mm, although CMMT values may have been colder as indicated by the disappearance of the crocodile Diplocynodon and the temperature thresholds derived from modern alligators. For most palaeoclimatic parameters, estimates derived by CLAMP significantly differ from those derived by most other methods. With respect to the consistency of the results obtained by CA, LMA and ELPA, it is suggested that for the Schrotzburg locality CLAMP is probably less reliable than most other methods. A possible explanation may be attributed to the correlation between leaf physiognomy and climate as represented by the CLAMP calibration data set which is largely based on extant floras from N America and E Asia and which may be not suitable for application to the European Neogene. All physiognomic methods used here were affected by taphonomic biasses. Especially the number of taxa had a great influence on the reliability of the palaeoclimate estimates. Both multivariate leaf physiognomic approaches are less influenced by such biasses than the univariate LMA. In combination with previously published results from the European and Asian Neogene, our data suggest that during the Neogene in Eurasia CLAMP may produce temperature estimates, which are systematically too cold as compared to other evidence. This pattern, however, has to be further investigated using additional palaeofloras.
Resumo:
The decomposition rate of organic, Compounds, following the death of a plant, is dependent on several external factors. Assimilatory pigments generally undergo a rapid degradation. In certain condition, however, their decomposition may be considerably retarded; e.g. compounds similar to chlorophyll and some carotenoids, as a and ß-carotene, lutein and others, may persist several thousand years in marine and lake Sediments (Vallentyne 1960). Derivatives of chlorophyll were also found in the surface layer of wood soil (Gorham 1959). In this connection the question arises, in what a way a still different environment, namely peat, influences the decomposition rate of pigments. The starting point in these investigations was the fact observed by one of the co-authors, that many subfossil fir needles from various depths of the peat bog in Cergowa Gora were bright yellow green pigmented. Macroscopic otoservations have already suggested that, at least, a part of the pigments did not undergo decomposition. A study was undertaken with the aim to determine the quantitative and qualitative changes in assimilatory pigments, occurring in fir needles in dependence on the pexiod of time they were lying in the peat bog.
Resumo:
In a borehole in the southern outskirts of the town of Göttingen, limnic sediments of several Pleistocene warm periods occur intercalated with coarse solifluction debris and gravel of the river Leine. Pollen analysis of the limnic sediments in a borehole at Ottostrasse gave evidence of three warm periods of interglacial character, followed by three interstadial phases. The warm phases are separated one from another by stadial phases with, at least in one case, indications of periglacial solifluction. This sequence belongs to the Brunhes magnetic epoch. The pollen data allow to exclude an Eemian or Holsteinian age of the warm period sediments. Thus a Cromerian age is assumed, though the exact position of the newly described warm periods within the ''Cromerian'' remains uncertain. A section in a borehole at Akazienweg is of Holsteinian age.
Resumo:
The biostratigraphic classification of the Pleistocene in north-western and central Europe is still insufficiently known, in spite of numerous geological and vegetation-history investigations. The question is not even clear, for example, how often a warm-period vegetation with thermophilous trees such as Quercus, Ulmus, Tilia, Carpinus etc could develop here. In past years, on the basis of several geological and vegetation-history findings, suspicion has often been expressed that some of the classical stages of the Pleistocene could include more warm periods than heretofore assumed, and as a result of recent investigations the period between the Waal and Holstein interglacials seems to include at least two warm periods, of which the Cromer is one. This paper contributes to this problem. The interglacial sediments coming from the Elm-Mountains near Brunswick and from the Osterholz near Elze - both within the limits of the German Mittelgebirge - were investigated by pollen analysis. In both cases a Pinus-Betula zone and a QM zone were found. The vegetation development of the Pinus-Betula zone is characterized in both sequences by the early appearance of Picea. Because of strong local influence at the Osterholz a detailed correlation is difficult. However, vegetation development at the time of the QM zone at both sites was similar; it is especially characterized by the facts that Ulmus clearly migrated to the site earlier than Quercus and was very abundant throughout this time. Furthermore, both diagrams show very low amounts of Corylus. The interglacial of the Osterholz shows in addition to the above; a Carpinus-QM-Picea-zone in which Eucommia reaches a relative high value and in the upper of which Azolla filiculoides was also found. The similarity of vegetation development justifies acceptance of the same age for the occurrences. A comparison of the vegetation development at the Elm and the Osterholz with those of the Eem, Holstein, Waal, and Tegelen warm periods as well as with all the Cromer sites so far investigated shows that only a correlation with the Cromer Complex is possible. This correlation is supported by the geologic relations in the Osterholz (the deposit is overlain by Elster till). Therefore the till-like material with Scandinavian rock fragments underlying the deposit at Elm is of particular interest. The 'Rhume' interglacial beds at Bilshausen, only 60 km south of Osterholz, is also assigned to the Cromer complex, but the two deposits cannot be of the same age because the vegetation development differs. Therefore the Cromer complex must include at least two warm periods. Further conclusions about the relative stratigraphic position of these two occurrences and correlations of other Cromer sites are at this time not possible, however.
Resumo:
Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.70' E, 51°39.30' N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.