122 resultados para 3-DIMENSIONAL ISLAND FORMATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic d13C values (F. wuellerstorfi), kaolinite/chlorite ratios and sortable silt median grain sizes in sediments of a core from the abyssal Agulhas Basin record the varying impact of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) during the last 200 ka. The data indicate that NADW influence decreased during glacials and increased during interglacials, in concert with the global climatic changes of the late Quaternary. In contrast, AABW displays a much more complex behaviour. Two independent modes of deep-water formation contributed to the AABW production in the Weddell Sea: 1) brine rejection during sea ice formation in polynyas and in the sea ice zone (Polynya Mode) and 2) super-cooling of Ice Shelf Water (ISW) beneath the Antarctic ice shelves (Ice Shelf Mode). Varying contributions of the two modes lead to a high millennial-scale variability of AABW production and export to the Agulhas Basin. Highest rates of AABW production occur during early glacials when increased sea ice formation and an active ISW production formed substantial amounts of deep water. Once full glacial conditions were reached and the Antarctic ice sheet grounded on the shelf, ISW production shut down and only brine rejection generated moderate amounts of deep water. AABW production rates dropped to an absolute minimum during Terminations I and II and the Marine Isotope Transition (MIS) 4/3 transition. Reduced sea ice formation concurrent with an enhanced fresh water influx from melting ice lowered the density of the surface water in the Weddell Sea, thus further reducing deep water formation via brine rejection, while the ISW formation was not yet operating again. During interglacials and the moderate interglacial MIS 3 both brine formation and ISW production were operating, contributing various amounts to AABW formation in the Weddell Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cold-water coral Lophelia pertusa is one of the few species able to build reef-like structures and a 3-dimensional coral framework in the deep oceans. Furthermore, deep cold-water coral bioherms may be among the first marine ecosystems to be affected by ocean acidification. Colonies of L. pertusa were collected during a cruise in 2006 to cold-water coral bioherms of the Mingulay reef complex (Hebrides, North Atlantic). Shortly after sample collection onboard these corals were labelled with calcium-45. The same experimental approach was used to assess calcification rates and how those changed due to reduced pH during a cruise to the Skagerrak (North Sea) in 2007. The highest calcification rates were found in youngest polyps with up to 1% d-1 new skeletal growth and average rates of 0.11±0.02% d-1±S.E.). Lowering pH by 0.15 and 0.3 units relative to the ambient level resulted in calcification being reduced by 30 and 56%. Lower pH reduced calcification more in fast growing, young polyps (59% reduction) than in older polyps (40% reduction). Thus skeletal growth of young and fast calcifying corallites suffered more from ocean acidification. Nevertheless, L. pertusa exhibited positive net calcification (as measured by 45Ca incorporation) even at an aragonite saturation state below 1.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Major and trace element composition as well as Sm-Nd isotopes of whole-rock samples and clay fractions (<2 µm) of bentonite layers and U-Pb ages of detrital zircons from the Paleogene Basilika Formation (Svalbard) and Mount Lawson Formation (Ellesmere Island).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Graywackes and shales of the Bol'shoi Lyakhov Island originally attributed to Mesozoic were subsequently considered based on microfossils as Late Proterozoic in age. At present, these sediments in the greater part of the island are dated back to Permian based on palynological assemblages. In the examined area of the island, this siliciclastic complex is intensely deformed and tectonically juxtaposed with blocks of oceanic and island-arc rocks exhumed along the South Anyui suture. The complex is largely composed of turbidites with members displaying hummocky cross-stratification. Studied mineral and geochemical charac¬teristics of the rocks defined three provenances of clastic material: volcanic island arc, sedimentary cover and/or basement of an ancient platform, and exotic blocks of oceanic and island-arc rocks such as serpentinites and amphibolites. All rock associations represent elements of an orogenic structure that originated by collision of the New Siberian continental block with the Anyui-Svyatoi Nos island arc. Flyschoid sediments accumu¬lated in a foredeep in front of the latter structure in the course of collision. Late Jurassic volcanics belonging to the Anyui-Svyatoi Nos island arc determine the lower age limit of syncollision siliciclastic rocks. Presence of Late Jurassic zircons in sandstones of the flyschoid sequence in the Bol'shoi Lyakhov Island is confirmed by fission-track dating. The upper age limit is determined by Aptian-Albian postcollision granites and diorites intruding the siliciclastic complex. Consequently, the flyschoid sequence is within stratigraphic range from the terminal Late Jurassic to Neocomian. It appears that Permian age of sediments suggested earlier is based on redeposited organic remains. The same Late Jurassic-Neocomian age and lithology are characteristic of fossiliferous siliciclastic sequences of the Stolbovoi and Malyi Lyakhov islands, the New Siberian Archipelago, and of graywackes in the South Anyui area in the Chukchi Peninsula. All these sediments accumulated in a spacious foredeep that formed in the course the late Cimmerian orogeny along the southern margin of the Arctic conti¬nental block.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An experiment was carried out on the soft bottom in the sublitoral zone of the Furugelm Island (Peter the Great Bay, Sea of Japan) to study formation of benthic communities. Boxes with defauned sediments were placed on depths of 4, 6 and 13 m and exposed during 60 days in the summer period. Half of them were covered with a net with mesh size 2 cm to prevent effect of large predators. It was found that spatial pattern of invertebrates' sinking in the bay conforms to distribution of benthic communities. Larvae of benthic invertebrates sinks in general in places inhabited by their adult species. The main factors responsible for recolonzation are: sediment type and local hydrodynamic conditions. Heart-shaped sea urchin Echinocardium cordatum is numerically dominated in the bay on depth 3-4.5 m, but its larvae sinks in the deeper area. Community structure is supported by mature specimen migration to places inhabited by species. Predators affect largely on the species.