375 resultados para Authors, Norwegian.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of a long term research of the authors a database model of grain size composition of unlithified marine and ocean bottom sediments has been created. An improved method of water-mechanical analysis has been offered. Grain size parameters of main types of bottom sediments have been measured and calculated. The genetic interpretation of results and regularities of sandy, aleuritic and pelitic material in basins of sedimentation are under discussion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluctuations in benthic foraminiferal faunas over the last 130,000 yr in four piston cores from the Norwegian Sea are correlated with the standard worldwide oxygen-isotope stratigraphy. One species, Cibicides wuellerstorfi, dominates in the Holocene section of each core, but alternates downcore with Oridorsalis tener, a species dominant today only in the deepest part of the basin. O. tener is the most abundant species throughout the entire basin during periods of particularly cold climate when the Norwegian Sea presumably was ice covered year round and surface productivity lowered. Portions of isotope Stages 6, 3, and 2 are barren of benthic foraminifera; this is probably due to lowered benthic productivity, perhaps combined with dilution by ice-rafted sediment; there is no evidence that the Norwegian Sea became azoic. The Holocene and Substage 5e (the last interglacial) are similar faunally. This similarity, combined with other evidence, supports the presumption that the Norwegian Sea was a source of dense overflows into the North Atlantic during Substage 5e as it is today. Oxygen-isotope analyses of benthic foraminifera indicate that Norwegian Sea bottom waters warmer than they are today from Substage 5d to Stage 2, with the possible exception of Substage 5a. These data show that the glacial Norwegian Sea was not a sink for dense surface water, as it is now, and thus it was not a source of deep-water overflows. The benthic foraminiferal populations of the deep Norwegian Sea seem at least as responsive to near-surface conditions, such as sea-ice cover, as they are to fluctuations in the hydrography of the deep water. Benthic foraminiferal evidence from the Norwegian Sea is insufficient in itself to establish whether or not the basin was a source of overflows into the North Atlantic at any time between the Substage 5e/5d boundary at 115,000 yr B.P. and the Holocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Explosive ocean island volcanism in the Greenland-Iceland-Norwegian Sea (GIN Sea) is indicated by marine tephra layers at 10-300 ka. Peaks of explosive volcanism occurred in oxygen isotope stages 8, 7, 5 and 1. The depositional age of the tephra was estimated using the oxygen isotope stratigraphy and dating of marine records. Geochemical analyses of the tephra layers show that all originate from Iceland. Here we report the characteristics of tephra from these major Icelandic events in 30 deep-sea cores from the GIN Sea. Our findings provide constraints on the distribution of tephra from the eruption source. For the Vedde Ash (oxygen isotope stage 1) we estimate a minimum fallout area of 2*10**5 km**2, stretching from central Greenland in the west and southern Sweden in the east, to 71°N in the GIN Sea. The magnitude of the eruption and the regional wind conditions controlled the extent and concentrations of these ash fallout events. Oceanic circulation and differential settling may have affected the distribution and final deposition of ash particles such as bubble wall shards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Late Jurassic to Early Cretaceous (Volgian-Ryazanian) was a period of a second-order sea-level low stand, and it provided excellent conditions for the formation of shallow marine black shales in the Norwegian-Greenland Seaway (NGS). IKU Petroleum Research drilling cores taken offshore along the Norwegian shelf were investigated with geochemical and microscopic approaches to (1) determine the composition of the organic matter, (2) characterize the depositional environments, and (3) discuss the mechanisms which may have controlled production, accumulation, and preservation of the organic matter. The black shale sequences show a wide range of organic carbon contents (0.5-7.0 wt %) and consist of thermally immature organic matter of type II to II/III kerogen. Rock-Eval pyrolysis revealed fair to very good petroleum source rock potential, suggesting a deposition in restricted shallow marine basins. Well-developed lamination and the formation of autochthonous pyrite framboids further indicate suboxic to anoxic bottom water conditions. In combination with very low sedimentation rates it seems likely that preservation was the principal control on organic matter accumulation. However, a decrease of organic carbon preservation and an increase of refractory organic matter from the Volgian to the Hauterivian are superimposed on short-term variations (probably reflecting Milankovitch cycles). Various parameters indicate that black shale formation in the NGS was gradually terminated by increased oxidative conditions in the course of a sea-level rise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-, i.e. 15-140-yr-resolution climate records from sediment cores 23071, 23074, and PS2644 from the Nordic Seas were used to recon:;truct changes in the surface and deep water circulation during marine isotope stages 1-5.1, i.e. the last 82 000 yr. From this the causal links between the paleoceanographic signals and the Dansgaard-Oeschger events 1-21 revealed in 0180-ice-core records from Greenland were determined. The stratigraphy of the cores is based on the planktic 0180 curves, the minima of which were directly correlated with the GISP2-0180 record, numerous AMS 14C ages, and some ash layers. The planktic d18O and dl3C curves of all three cores reveal numerous meltwater events, the most pronounced of which were assigned to the Heinrich events 1-6. The meltwater events, among other things also accompanied by cold sea surface temperatures and high IRD concentration, correlate with the stadial phases of the Dansgaard-Oeschger cycles and in the western Iceland Sea also to colder periods or abrupt drops in 0180 within a few longer interstadials. Besides being more numerous, the meltwater events also show isotope values lighter in the Iceland Sea than in the central Norwegian Sea, especially if compared to core 23071. This implies a continuous inflow of relative warm Atlantic water into the Norwegian Sea and a cyclonic circulation regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ongoing process of ocean acidification already affects marine life and, according to the concept of oxygen- and capacity limitation of thermal tolerance (OCLTT), these effects may be exacerbated at the boarders of the thermal tolerance window. We studied the effects of elevated CO2 concentrations on clapping performance and energy metabolism of the commercially important scallop Pecten maximus. Individuals were exposed for at least 30 days to 4°C (winter) or to 10°C (spring/summer) at either ambient (0.04 kPa, normocapnia) or predicted future PCO2 levels (0.11 kPa, hypercapnia). Cold (4°C) exposed groups revealed thermal stress exacerbated by PCO2 indicated by a high mortality overall and its increase from 55% under normocapnia to 90% under hypercapnia. We therefore excluded the 4°C groups from further experimentation. Scallops at 10°C showed impaired clapping performance following hypercapnic exposure. Force production was significantly reduced although the number of claps was unchanged between normo- and hypercapnia exposed scallops. The difference between maximal and resting metabolic rate (aerobic scope) of the hypercapnic scallops was significantly reduced compared to normocapnic animals, indicating a reduction in net aerobic scope. Our data confirm that ocean acidification narrows the thermal tolerance range of scallops resulting in elevated vulnerability to temperature extremes and impairs the animal's performance capacity with potentially detrimental consequences for its fitness and survival in the ocean of tomorrow.