32 resultados para mixed transfer functions
Resumo:
Hydrographical changes of the southern Indian Ocean over the last 230 kyr, is reconstructed using a 17-m-long sediment core (MD 88 770; 46°01'S 96°28'E, 3290m). The oxygen and carbon isotopic composition of planktonic (N. pachyderma sinistra and G. bulloides) and benthic (Cibicidoides wuellerstorfi, Epistominella exigua, and Melonis barleeanum) foraminifera have been analysed. Changes in sea surface temperatures (SST) are calculated using diatom and foraminiferal transfer functions. A new core top calibration for the Southern Ocean allows an extension of the method developed in the North Atlantic to estimate paleosalinities (Duplessy et al., 1991). The age scale is built using accelerator mass spectrometry (AMS) 14C dating of N. pachyderma s. for the last 35 kyr, and an astronomical age scale beyond. Changes in surface temperature and salinity clearly lead (by 3 to 7 kyr) deep water variations. Thus changes in deep water circulation are not the cause of the early response of the surface Southern Ocean to climatic changes. We suggest that the early warming and cooling of the Southern Ocean result from at least two processes acting in different orbital bands and latitudes: (1) seasonality modulated by obliquity affects the high-latitude ocean surface albedo (sea ice coverage) and heat transfer to and from the atmosphere; (2) low-latitude insolation modulated by precession influences directly the atmosphere dynamic and related precipitation/ evaporation changes, which may significantly change heat transfer to the high southern latitudes, through their control on latitudinal distribution of the major frontal zones and on the conditions of intermediate and deep water formation.
Resumo:
Paleotemperature estimates based on coral Sr/Ca have not been widely accepted because the reconstructed glacial-Holocene shift in tropical sea-surface temperature (~4-6°C) is larger than that indicated by foraminiferal Mg/Ca (~2-4°C). We show that corals over-estimate changes in sea-surface temperature (SST) because their records are attenuated during skeletogenesis within the living tissue layer. To quantify this process, we microprofiled skeletal mass accumulation within the tissue layer of Porites from Australasian coral reefs and laboratory culturing experiments. The results show that the sensitivity of the Sr/Ca and d18O thermometers in Porites will be suppressed, variable, and dependent on the relationship between skeletal growth rate and mass accumulation within the tissue layer. Our findings help explain why d18O-SST sensitivities for Porites range from -0.08 per mil/°C to -0.22 per mil/°C and are always less than the value of -0.23 per mil/°C established for biogenic aragonite. Based on this observation, we recalibrated the coral Sr/Ca thermometer to determine a revised sensitivity of -0.084 mmol/mol/°C. After rescaling, most of the published Sr/Ca-SST estimates for the Indo-Pacific region for the last ~14,000 years (-7°C to +2°C relative to modern) fall within the 95% confidence envelope of the foraminiferal Mg/Ca-SST records. We conclude that two types of calibration scales are required for coral paleothermometry; an attenuated Porites-specific thermometer sensitivity for studies of seasonal to interannual change in SST and, importantly, the rescaled -0.084 mmol/mol/°C Sr/Ca sensitivity for studies of 20th-century trends and millennial-scale changes in mean SST. The calibration-scaling concept will apply to the development of transfer functions for all geochemical tracers in corals.
Resumo:
The timing and magnitude of sea-surface temperature (SST) changes in the tropical southern South China Sea (SCS) during the last 16,500 years have been reconstructed on a high-resolution, 14C-dated sediment core using three different foraminiferal transfer functions (SIMMAX28, RAM, FP-12E) and geochemical (Uk'37) SST estimates. In agreement with CLIMAP reconstructions, both the FP-12E and the Uk'37 SST estimates show an average late glacial-interglacial SST difference of 2.0°C, whereas the RAM and SIMMAX28 foraminiferal transfer functions show only a minor (0.6°C) or no consistent late glacial-interglacial SST change, respectively. Both the Uk'37 and the FP-12E SST estimates, as well as the planktonic foraminiferal delta18O values, indicate an abrupt warming (ca. 1°C in <200 yr) at the end of the last glaciation, synchronous (within dating uncertainties) with the Bølling transition as recorded in the Greenland Ice Sheet Project 2 (GISP2) ice core, whereas the RAM-derived deglacial SST increase appears to lag during this event by ca. 500 yr. The similarity in abruptness and timing of the warming associated with the Bølling transition in Greenland and the southern SCS suggest a true synchrony of the Northern Hemisphere warming at the end of the last glaciation. In contrast to the foraminiferal transfer function estimates that do not indicate any consistent cooling associated with the Younger Dryas (YD) climate event in the tropical SCS, the Uk'37 SST estimates show a cooling of ca. 0.2-0.6°C compared to the Bølling-Allerød period. These Uk'37 SST estimates from the southern SCS argue in favor of a Northern Hemisphere-wide, synchronous cooling during the YD period.
Resumo:
Physiognomic traits of plant leaves such as size, shape or margin are decisively affected by the prevailing environmental conditions of the plant habitat. On the other hand, if a relationship between environment and leaf physiognomy can be shown to exist, vegetation represents a proxy for environmental conditions. This study investigates the relationship between physiognomic traits of leaves from European hardwood vegetation and environmental parameters in order to create a calibration dataset based on high resolution grid cell data. The leaf data are obtained from synthetic chorologic floras, the environmental data comprise climatic and ecologic data. The high resolution of the data allows for a detailed analysis of the spatial dependencies between the investigated parameters. The comparison of environmental parameters and leaf physiognomic characters reveals a clear correlation between temperature related parameters (e.g. mean annual temperature or ground frost frequency) and the expression of leaf characters (e.g. the type of leaf margin or the base of the lamina). Precipitation related parameters (e.g. mean annual precipitation), however, show no correlation with the leaf physiognomic composition of the vegetation. On the basis of these results, transfer functions for several environmental parameters are calculated from the leaf physiognomic composition of the extant vegetation. In a next step, a cluster analysis is applied to the dataset in order to identify "leaf physiognomic communities". Several of these are distinguished, characterised and subsequently used for vegetation classification. Concerning the leaf physiognomic diversity there are precise differences between each of these "leaf physiognomic classes". There is a clear increase of leaf physiognomic diversity with increasing variability of the environmental parameters: Northern vegetation types are characterised by a more or less homogeneous leaf physiognomic composition whereas southern vegetation types like the Mediterranean vegetation show a considerable higher leaf physiognomic diversity. Finally, the transfer functions are used to estimate palaeo-environmental parameters of three fossil European leaf assemblages from Late Oligocene and Middle Miocene. The results are compared with results obtained from other palaeo-environmental reconstructing methods. The estimates based on a direct linear ordination seem to be the most realistic ones, as they are highly consistent with the Coexistence Approach.
Resumo:
A new planktic foraminifer transfer function (GSF18) related 5 North Atlantic assemblages to winter and summer sea surface temperature. GSF18, based on recombined and simplified core top census data, preserves most environmental information and reproduces modern North Atlantic conditions with approximately the same accuracy as previous transfer functions, but can be more readily applied to faunal samples ranging in age from Pliocene to Holocene. Transfer function GSF18 has been applied to faunal data from Deep Sea Drilling Project Hole 552A to produce a 2.5 m.y. sea-surface temperature (SST) time series. Estimates show several periods between 2.3 and 4.6 Ma during which mean SST's were both several degrees warmer and several degrees cooler than modern conditions. Between 2.9 and 4.0 Ma SST was generally warmer than modern except for a 250 k.y. interval centered at 3.3 Ma. Maximum SST, with respect to modern conditions, occurred after the cool interval near 3.1 Ma when SST was approximately 3.6° C warmer than present conditions. Comparison of SST estimates with stable isotope data suggest that after peak warming at 3.1 Ma, there was an overall surface water cooling with concomitant build up of global ice volume, culminating in Northern Hemisphere glaciation. This event is also indicated by the presence of ice rafted detritus in 552A sediments at about 2.45 Ma.
Resumo:
The sensitivity of the tropics to climate change, particularly the amplitude of glacial-to-interglacial changes in sea surface temperature (SST), is one of the great controversies in paleoclimatology. Here we reassess faunal estimates of ice age SSTs, focusing on the problem of no-analog planktonic foraminiferal assemblages in the equatorial oceans that confounds both classical transfer function and modern analog methods. A new calibration strategy developed here, which uses past variability of species to define robust faunal assemblages, solves the no-analog problem and reveals ice age cooling of 5° to 6°C in the equatorial current systems of the Atlantic and eastern Pacific Oceans. Classical transfer functions underestimated temperature changes in some areas of the tropical oceans because core-top assemblages misrepresented the ice age faunal assemblages. Our finding is consistent with some geochemical estimates and model predictions of greater ice age cooling in the tropics than was inferred by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981] and thus may help to resolve a long-standing controversy. Our new foraminiferal transfer function suggests that such cooling was limited to the equatorial current systems, however, and supports CLIMAP's inference of stability of the subtropical gyre centers.
Resumo:
The quantitative diatom analysis of 218 surface sediment samples recovered in the Atlantic and western Indian sector of the Southern Ocean is used to define a base of reference data for paleotemperature estimations from diatom assemblages using the Imbrie and Kipp transfer function method. The criteria which justify the exclusion of samples and species out of the raw data set in order to define a reference database are outlined and discussed. Sensitivity tests with eight data sets were achieved evaluating the effects of overall dominance of single species, different methods of species abundance ranking, and no-analog conditions (e.g., Eucampia Antarctica) on the estimated paleotemperatures. The defined transfer functions were applied on a sediment core from the northern Antarctic zone. Overall dominance of Fragilariopsis kerguelensis in the diatom assemblages resulted in a close affinity between paleotemperature curve and relative abundance pattern of this species downcore. Logarithmic conversion of counting data applied with other ranking methods in order to compensate the dominance of F. kerguelensis revealed the best statistical results. A reliable diatom transfer function for future paleotemperature estimations is presented.
Resumo:
ODP Site 1089 is optimally located in order to monitor the occurrence of maxima in Agulhas heat and salt spillage from the Indian to the Atlantic Ocean. Radiolarian-based paleotemperature transfer functions allowed to reconstruct the climatic history for the last 450 kyr at this location. A warm sea surface temperature anomaly during Marine Isotope Stage (MIS) 10 was recognized and traced to other oceanic records along the surface branch of the global thermohaline (THC) circulation system, and is particularly marked at locations where a strong interaction between oceanic and atmospheric overturning cells and fronts occurs. This anomaly is absent in the Vostok ice core deuterium, and in oceanic records from the Antarctic Zone. However, it is present in the deuterium excess record from the Vostok ice core, interpreted as reflecting the temperature at the moisture source site for the snow precipitated at Vostok Station. As atmospheric models predict a subtropical Indian source for such moisture, this provides the necessary teleconnection between East Antarctica and ODP Site 1089, as the subtropical Indian is also the source area of the Agulhas Current, the main climate agent at our study location. The presence of the MIS 10 anomaly in the delta13C foraminiferal records from the same core supports its connection to oceanic mechanisms, linking stronger Agulhas spillover intensity to increased productivity in the study area. We suggest, in analogy to modern oceanographic observations, this to be a consequence of a shallow nutricline, induced by eddy mixing and baroclinic tide generation, which are in turn connected to the flow geometry, and intensity, of the Agulhas Current as it flows past the Agulhas Bank. We interpret the intensified inflow of Agulhas Current to the South Atlantic as responding to the switch between lower and higher amplitude in the insolation forcing in the Agulhas Current source area. This would result in higher SSTs in the Cape Basin during the glacial MIS 10, due to the release into the South Atlantic of the heat previously accumulating in the subtropical and equatorial Indian and Pacific Ocean. If our explanation for the MIS 10 anomaly in terms of an insolation variability switch is correct, we might expect that a future Agulhas SSST anomaly event will further delay the onset of next glacial age. In fact, the insolation forcing conditions for the Holocene (the current interglacial) are very similar to those present during MIS 11 (the interglacial preceding MIS 10), as both periods are characterized by a low insolation variability for the Agulhas Current source area. Natural climatic variability will force the Earth system in the same direction as the anthropogenic global warming trend, and will thus lead to even warmer than expected global temperatures in the near future.
Resumo:
Past sea-surface conditions over the northern North Atlantic during the last glacial maximum were examined from the study of 61 deep-sea cores. The last glacial maximum time slice studied here corresponds to an interval between Heinrich layers H2 and H1, and spanning about 20-16 ka on a 14C time scale. Transfer functions based on dinocyst assemblages were used to reconstruct sea-surface temperature, salinity, and sea-ice cover. The results illustrate extensive sea-ice cover along the eastern Canadian margins and sea-ice spreading, only during winter, over most of the northern North Atlantic. On the whole, much colder winter prevailed, despite relatively mild conditions in August (10-15°C at most offshore sites), thus suggesting a larger seasonal contrast of temperatures than today. Lower salinity than at present is reconstructed, especially along the eastern Canadian and Scandinavian margins, likely because of meltwater supply from the surrounding ice sheets. These reconstructions contrast with those established by CLIMAP on the basis of planktonic foraminifera. These differences are discussed with reference to the stratigraphical frame of the last glacial maximum, which was not the coldest phase of the last glacial stage. The respective significance of dinocyst and foraminifer records is also examined in terms of the thermohaline characteristics of surface waters and the vertical structure of upper water masses, which was apparently much more stratified than at present in the northern North Atlantic, thus preventing deep-water formation.
Resumo:
In this study we present a global distribution pattern and budget of the minimum flux of particulate organic carbon to the sea floor (J POC alpha). The estimations are based on regionally specific correlations between the diffusive oxygen flux across the sediment-water interface, the total organic carbon content in surface sediments, and the oxygen concentration in bottom waters. For this, we modified the principal equation of Cai and Reimers [1995] as a basic monod reaction rate, applied within 11 regions where in situ measurements of diffusive oxygen uptake exist. By application of the resulting transfer functions to other regions with similar sedimentary conditions and areal interpolation, we calculated a minimum global budget of particulate organic carbon that actually reaches the sea floor of ~0.5 GtC yr**-1 (>1000 m water depth (wd)), whereas approximately 0.002-0.12 GtC yr**-1 is buried in the sediments (0.01-0.4% of surface primary production). Despite the fact that our global budget is in good agreement with previous studies, we found conspicuous differences among the distribution patterns of primary production, calculations based on particle trap collections of the POC flux, and J POC alpha of this study. These deviations, especially located at the southeastern and southwestern Atlantic Ocean, the Greenland and Norwegian Sea and the entire equatorial Pacific Ocean, strongly indicate a considerable influence of lateral particle transport on the vertical link between surface waters and underlying sediments. This observation is supported by sediment trap data. Furthermore, local differences in the availability and quality of the organic matter as well as different transport mechanisms through the water column are discussed.
Resumo:
A global sea surface temperature calibration based on the relative abundance of different morphotypes within the coccolithophore genus Gephyrocapsa in Holocene deep-sea sediments is presented. There is evidence suggesting that absolute sea surface temperature for a given location can be calculated from the relative abundance of Gephyrocapsa morphotypes in sediment samples, with a standard error comparable to temperature estimates derived from other temperature proxies such as planktic foraminifera transfer functions. A total of 110 Holocene sediment samples were selected from the Pacific, Indian, and Atlantic Oceans covering a mean sea surface temperature gradient from 13.6° to 29.3°C. Standard multiple linear regression analyses were applied to this data set, linking the relative abundance of Gephyrocapsa morphotypes to sea surface temperature. The best model revealed an r**2 of 0.83 with a standard residual error of 1.78°C for the estimation of mean sea surface temperature. This new proxy provides a unique opportunity for the reconstruction of paleotemperatures with a very small amount of sample material due to the minute size of coccoliths, permitting examination of thinly laminated sediments (e.g., a pinhead of material from laminated sediments for the reconstruction of annual sea surface temperature variations). Such fine-scale resolution is currently not possible with any other proxy. Application of this new paleotemperature proxy may allow new paleoenvironmental interpretations in the late Quaternary period and discrepancies between the different currently used paleotemperature proxies might be resolved.
Resumo:
A sediment core from Reykjanes Ridge has been studied at 10- to 50-year time resolution to document variability of Holocene surface water conditions in the western North Atlantic and to evaluate effects of Holocene ice-rafting episodes. Diatom assemblages are converted to quantitative sea surface temperatures (SST) using three different transfer functions. Spectral and scale-space methods are also applied on the records to explore variability at different timescales. Diatom assemblage and SST records clearly show that decaying remnants of the Laurentide ice sheet strongly influenced early Holocene climate in the western North Atlantic. This overrode the predominance of Milankovitch forcing, which played a key role in the development of Holocene climate in the eastern North Atlantic and Nordic Seas. Superimposed on general Holocene climate change is high-frequency SST variability on the order of 1°-3°C. The record also documents climatic oscillations with 600- to 1000-, ~1500-, and 2500-year periodicities, with a time-dependent dominance of different periodicities through the Holocene; a clear change in variability occurred about 5 ka BP. The SST record also provides evidence for Holocene cooling events (HCE) that, in some cases, correlate to documented southward intrusions of ice into the North Atlantic.
Resumo:
Based on the quantitative analysis of diatom assemblages preserved in 274 surface sediment samples recovered in the Pacific, Atlantic and western Indian sectors of the Southern Ocean we have defined a new reference database for quantitative estimation of late-middle Pleistocene Antarctic sea ice fields using the transfer function technique. The Detrended Canonical Analysis (DCA) of the diatom data set points to a unimodal distribution of the diatom assemblages. Canonical Correspondence Analysis (CCA) indicates that winter sea ice (WSI) but also summer sea surface temperature (SSST) represent the most prominent environmental variables that control the spatial species distribution. To test the applicability of transfer functions for sea ice reconstruction in terms of concentration and occurrence probability we applied four different methods, the Imbrie and Kipp Method (IKM), the Modern Analog Technique (MAT), Weighted Averaging (WA), and Weighted Averaging Partial Least Squares (WAPLS), using logarithm-transformed diatom data and satellite-derived (1981-2010) sea ice data as a reference. The best performance for IKM results was obtained using a subset of 172 samples with 28 diatom taxa/taxa groups, quadratic regression and a three-factor model (IKM-D172/28/3q) resulting in root mean square errors of prediction (RMSEP) of 7.27% and 11.4% for WSI and summer sea ice (SSI) concentration, respectively. MAT estimates were calculated with different numbers of analogs (4, 6) using a 274-sample/28-taxa reference data set (MAT-D274/28/4an, -6an) resulting in RMSEP's ranging from 5.52% (4an) to 5.91% (6an) for WSI as well as 8.93% (4an) to 9.05% (6an) for SSI. WA and WAPLS performed less well with the D274 data set, compared to MAT, achieving WSI concentration RMSEP's of 9.91% with WA and 11.29% with WAPLS, recommending the use of IKM and MAT. The application of IKM and MAT to surface sediment data revealed strong relations to the satellite-derived winter and summer sea ice field. Sea ice reconstructions performed on an Atlantic- and a Pacific Southern Ocean sediment core, both documenting sea ice variability over the past 150,000 years (MIS 1 - MIS 6), resulted in similar glacial/interglacial trends of IKM and MAT-based sea-ice estimates. On the average, however, IKM estimates display smaller WSI and slightly higher SSI concentration and probability at lower variability in comparison with MAT. This pattern is a result of different estimation techniques with integration of WSI and SSI signals in one single factor assemblage by applying IKM and selecting specific single samples, thus keeping close to the original diatom database and included variability, by MAT. In contrast to the estimation of WSI, reconstructions of past SSI variability remains weaker. Combined with diatom-based estimates, the abundance and flux pattern of biogenic opal represents an additional indication for the WSI and SSI extent.
Resumo:
A recently developed technique for determining past sea surface temperatures (SST), based on an analysis of the unsaturation ratio of long chain C37 methyl alkenones produced by Prymnesiophyceae phytoplankton (U37 k' ), has been applied to an upper Quaternary sediment core from the equatorial Atlantic. U37 k' temperature estimates were compared to those obtained from delta18O of the planktonic foraminifer Globigerinoides sacculifer and of planktonic foraminiferal assemblages for the last glacial cycle. The alkenone method showed 1.8°C cooling at the last glacial maximum, about 1/2 to 1/3 of the decrease shown by the isotopic method (6.3°C) and foraminiferal modern analogue technique estimates for the warm season (3.8°C). Warm season foraminiferal assemblage estimates based on transfer functions are out of phase with the other estimates, showing a 1.4°C drop at the last glacial maximum with an additional 0.9°C drop in the deglaciation. Increased alkenone abundances, total organic carbon percentage and foraminiferal accumulation rates in the last glaciation indicate an increase in productivity of as much as 4 times over present day. These changes are thought to be due to increased upwelling caused by enhanced winds during the glaciation. If U37 k' estimates are correct, as much as 50-70% (up to 4.5°C) of estimated delta18O and modern analogue temperature changes in the last glaciation may have been due to changes in thermocline depth, whereas transfer functions seem more strongly influenced by seasonality changes. This indicates these estimates may be influenced as strongly by other factors as they are by SST, which in the equatorial Atlantic was only reduced slightly in the last glaciation.
Resumo:
Surface sediments at 439 sites throughout the North Atlantic Ocean and adjacent seas have been analyzed for dinoflagellate cysts in order to establish a reference database from which paleoenvironmental transfer functions can be developed. Laboratory procedures and systematics were standardized in order to avoid bias introduced by the selective loss of taxa and to facilitate site to site comparison. 371 sites were retained to develop the database that includes 41 taxa, some of which were grouped using morphological and/or ecological criteria. 27 taxa were retained for statistical purposes. Distribution maps of these latter taxa have been plotted on the basis of their relative abundance. Principal component analyses were performed in order to describe the distribution of assemblages. The relation between the assemblages, as well as the relative abundance of individual taxa, and selected sea-surface parameters are illustrated. The parameters which were considered include temperature and salinity for winter (February) and summer (August) together with the duration of sea-ice cover. Transfer functions using the best analogue method have been tested with a view to reconstruct past sea-surface parameters. Validation procedures on this transfer function demonstrate that more than 95% of the reconstructions are included within the interannual variability of modern sea-surface conditions. Therefore, these transfer functions give accurate results and can be applied to reconstructing paleo-temperatures and -salinities from analogous assemblages in Quaternary sedimentary sequences. Protoperidinium stellatum (Wall in Wall & Dale, 1968) Head, comb. nov. (basionym = Peridinium stellatum) is proposed as new, and Algidasphaeridium? minutum var. cezare de Vernal et al., 1989 ex de Vernal et al. is newly validated.